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1. Introduction
Cross-sectional asset pricing research has linked stocks’ expected returns to a large
set of firm characteristics. To summarize these cross-sectional pricing patterns in
a reduced-form pricing model, researchers often construct stochastic discount factor
(SDF) proxies with multiple characteristics-based factors. Individual assets’ weights
in these factor portfolios are functions of stock characteristics. Researchers use a va-
riety of different heuristic approaches to specify these weights. For example, Fama
and French (1993) sort stocks by characteristics and then form portfolios by applying
quintile cutoffs (sorted factors); Kozak et al. (2020) construct portfolios with weights
proportional to stocks’ centered univariate cross-sectional rank for each characteristic
(univariate factors); Fama and French (2020) use the slopes of monthly cross-sectional
OLS regressions of returns on characteristics as factor portfolio returns (OLS factors).1

There is, however, only one unique SDF—or, equivalently, one mean-variance effi-
cient portfolio return—that lies in the span of returns of the individual assets (Hansen
and Jagannathan, 1991). Under which conditions do these different heuristic methods
yield this SDF? Put differently, under which conditions is the investment opportu-
nity set not deteriorating if one aggregates individual assets to these factor portfolios?
Somewhat surprisingly, the answer to this fundamental question is not available in the
literature.

Clearly, some special conditions must be met because the weights of individual
assets in the mean-variance efficient portfolio weights depend on the return covariance
matrix, but none of these heuristic methods use any information from the covariance
matrix in factor construction. Our first objective in this paper is to work out what
these conditions are.

We set estimation issues aside at first and work with population moments. We
assume that conditional expected returns of N individual stocks are linear in J ≤ N
firm characteristics collected in the N ×J characteristics matrix X t. We have in mind
that these are the characteristics that a researcher has chosen to work with in factor
construction. We are interested in understanding when the resulting factors fail to
span the SDF even though conditional expected returns are perfectly linear in these

1 More precisely, Fama and French (2020) use a hybrid approach where individual stocks are
first sorted into a relatively large number of characteristics-based portfolios and the value-weighted
returns and average characteristics of these portfolios are then the input for the cross-sectional OLS
regressions. The MSCI BARRA factor model, which goes back to Rosenberg (1974) and is widely
applied in industry, is also based on OLS factors.
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characteristics.2
As a starting point, we show that the SDF that prices all individual assets can

be expressed as a multifactor SDF spanned by J factors that are the slopes of cross-
sectional GLS regressions of returns on lagged firm characteristics (GLS factors). The
inverse of the conditional covariance matrix of returns serves as the GLS weighting
matrix. The matrix of individual assets’ conditional betas on the GLS factors is then
exactly equal to X t.3

While GLS factors are theoretically optimal, they are rarely used in empirical re-
search. This may be due, in part, to the empirical challenges involved in their con-
struction, which requires inverting a large conditional covariance matrix. More broadly,
researchers may have a preference for simpler heuristic approaches. For this reason, it
is important to know whether heuristic approaches that bypass the covariance matrix
inversion problem can deliver factors that span the SDF. Sorted factors, univariate
factors, and OLS factors are all simply weighting stocks by columns of X t or a non-
singular linear transformation thereof. We show that these factors span the SDF if
and only if the conditional covariance matrix Σt of individual asset returns takes the
specific form

Σt = X tΨtX
′
t +U tΩtU

′
t, U ′

tX t = 0. (1)

This means that there must be a clean separation among the sources of systematic risk
such that loadings on up to J systematic factors are perfectly spanned by X t while
loadings on the remaining ones are orthogonal to X t. When (1) holds, individual
assets’ betas on OLS factors are exactly equal to X t, i.e., covariances are equal to
characteristics. Fama and French (2020) argue that the OLS factors can be used as
asset pricing factors in time-series regressions with conditional betas set equal to X t,
but our result shows that this is true if and only if condition (1) is satisfied.

Condition (1) is more likely to hold approximately when X t includes a large, com-
prehensive set of characteristics. In this case, important sources of stock return co-
variance can be absorbed in the first term of Σt in (1), which leaves U t and violations
of U ′

tX t = 0 quantitatively unimportant. Additional characteristics can help even if
they are unrelated to expected returns as long as they help to capture major sources of
stock return covariances. This suggests that the high Sharpe ratios achieved by high-
dimensional factor model specifications—such as those, for example, in Kozak et al.
(2020), Lettau and Pelger (2020b), and Didisheim et al. (2023)—may not solely re-
sult from the large number of characteristics predicting returns. Instead, these models
likely also benefit from characteristics absorbing sources of covariance between indi-

2 Throughout the paper, we use “factors span the SDF” as an informal shorthand terminology for
“the SDF lies in the span of the factors and the unit payoff.”

3 The GLS factors are similar to the characteristics-efficient portfolios of Daniel et al. (2020), but
in our analysis we allow for time-varying conditional moments.
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vidual stocks. But if the number of characteristics is small—as in the low-dimensional
factor models with only four or five characteristics-based factors that are still widely
used in empirical applications—there is little reason to think that this small number of
characteristics should be sufficient to span loadings on all major sources of covariance.

Importantly, the mean-variance inefficiency of heuristic factor models that we study
does not come from omitting characteristics. If condition (1) does not hold, heuristic
factors are inefficient relative to GLS factors even though they use the same charac-
teristics. The inefficiency of heuristic factors comes from contamination with unpriced
risks that are not compensated with higher mean returns. This is different from, e.g.
Giglio and Xiu (2021), who study biases in factor risk premia estimates due to omitted
priced factors which are likely associated with omitted characteristics.

Existing empirical results in the literature show that commonly-used heuristic fac-
tors are contaminated with unpriced risks, which suggests that low-dimensional mod-
els based on these factors do not satisfy condition (1).4 Motivated by these findings,
researchers have developed heuristic methods to remove unpriced components from
heuristic factors. Daniel et al. (2020) (DMRS) construct hedge portfolios that have
positive loadings on the original factors but zero exposure to the underlying character-
istics that determine expected returns. Residualizing the original factors with respect
to the hedge portfolio returns removes unpriced risks. However, it is not clear under
which conditions this heuristic hedging approach actually yields a better approxima-
tion of the SDF. Our second objective therefore is to understand the conditions under
which this hedging approach can be used to recover factors that span the SDF.

We show that the hedged factors span the SDF if the covariance matrix has the
structure in (1), but with the requirement U ′

tX t = 0 replaced with the requirement
that there exists a decomposition such that

U tΩtU
′
t = V tΓtV

′
t +EtΦtE

′
t, E′

tX t = 0, (2)

where V t is an N ×J matrix. This is a weaker condition than U ′
tX t = 0 because here

columns of X t can be correlated with columns of U t, as long as this correlation comes
only through the J columns of V t. Again, this condition is more likely to hold when
researchers consider a large, comprehensive set of characteristics.

While DMRS consider only one round of hedging, there is no reason to stop af-
ter one round. We show that iteration on this approach, by hedging once more the
already-hedged factor portfolios can yield further improvements and further weakens

4 For example, Gerakos and Linnainmaa (2018) find that the HML value factor is contaminated
with unpriced components; Back et al. (2015) find that OLS factors have alpha with respect to the
standard sorted factors of Hou et al. (2015) and Fama and French (2015); Grinblatt and Saxena (2018)
find that sorted factors do not price the basis portfolios from which they were constructed; Chib et al.
(2021) find that the method of factor construction affects asset pricing performance.
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the requirements on the covariance matrix. One can think of this iterated hedging
approach as incorporating more and more information from the covariance matrix into
the factors which brings them closer to GLS factors.

The approaches we discussed so far construct J factors to capture the pricing infor-
mation of J characteristics. Dimension-reduction methods aim to span the SDF with
a smaller number of K < J factors while again avoiding the need to invert an estimate
of Σt. Different approaches for dimension reduction exist in the literature, but it is not
clear what the necessary conditions are for the factors constructed with these methods
to span the SDF. Our third objective is therefore to establish these conditions.

We show that if and only if the conditional covariance matrix has a structure
like in (1), but with X t replaced by lower-dimensional K ≤ J linear combinations of
characteristics collected in X tQt, then portfolios with weights equal to X tQt, or a non-
singular linear transformation thereof, span the SDF. We further show that under these
conditions, two prominent methods of dimension reduction, the instrumented principal
components method (IPCA) of Kelly et al. (2019) and the projected PCA method
(PPCA) of Kim et al. (2021) are closely related. IPCA can then be implemented
using simple PCA on OLS factors while PPCA can be implemented via simple PCA
on univariate factors constructed using orthonormalized characteristics.

Finally, we turn to empirical implementation. If condition (1) does not hold em-
pirically, we should be able to improve the maximum squared Sharpe ratio of heuristic
factors by hedging unpriced risks, or by constructing GLS versions of these factors.

In the first part of our empirical analysis, we primarily focus on the properties of
OLS factor models constructed using the stock characteristics from Kozak (2019) and
Kozak et al. (2020). Consistent with our theoretical results, OLS factors generally do
not span the SDF that prices individual stocks. We infer this from the fact that hedging
the OLS factors’ unpriced risk exposures, or constructing approximate GLS factors,
produces statistically significant improvements of the maximum squared Sharpe ratio
attainable in- and out-of-sample. Iterating the hedging procedures produces further
gains in the maximum squared Sharpe ratio. Furthermore, while these gains are large
for small-scale factor models that use only a few characteristics, they vanish when we
use a large number of characteristics to construct the OLS factors. This is in line with
our conclusion from the theoretical analysis that condition (1) is more likely to hold,
and therefore OLS factors more likely to span the SDF that prices individual stocks,
when the econometrician employs a large number of characteristics. Interestingly,
improvements from hedging are bigger for univariate factors than for OLS factors,
which suggests that univariate factors are more contaminated by unpriced risks.

In the second part of our empirical analysis we implement and test several methods
of dimensionality reduction based on Kozak et al. (2020), Kelly et al. (2019), and Kim
et al. (2021). We find that latent factor models perform quite differently depending
on how their factors are constructed. As in the case without dimension reduction,
applying the OLS transformation to characteristics yields more efficient factors that
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are less contaminated with unpriced risks.

2. Conditions for characteristics-based portfolios to span
the mean-variance frontier

We consider a cross-section ofN assets with anN×1 vector of excess returns zt+1. Each
asset features J characteristics that are observable to the econometrician, collected in
the (time-varying) N×J matrix X t where J ≤ N , rank(X t) = J , and the first column
of X t is a vector of ones.5 In a number of places in our analysis we will use the residual
maker matrix Rt = I−X t (X

′
tX t)

−1
X ′

t that generates the residuals in a projection on
X t. Unless otherwise noted, we use the notation µy,t = Et[yt+1], Σy,t = vart(yt+1) for
the conditional moments of a random vector yt+1, Σxy,t as notation for the conditional
covariance matrix of two random vectors xt+1 and yt+1, and IK for a K ×K identity
matrix.

In what follows, all time-t conditional moments are conditioned on X t. We denote

Σt = var(zt+1|X t), µt = E[zt+1|X t], (3)

and we assume that Σt is positive definite. That these conditional moments are con-
ditioned on the characteristics observable to the econometrician is important. The
set of characteristics observable to investors could be larger or smaller than what is
contained in X t, without consequences for our results, as long as the law of one price
holds conditional on X t.6 Therefore, it is possible that conditional on investors’ in-
formation set, moments of excess returns could vary more or less than conditional on
the econometrician’s information. Only sources of variation linked to X t matter in our
analysis.

It is important to note that cross-sectional differences in elements µt do not capture
all cross-sectional return predictability based on the entire universe of existing stock
characteristics, but only cross-sectional return predictability conditioned on the subset
of characteristics that are included in X t. For example, if X t only contains a con-
stant and the book-to-market ratio, µt does not reflect predictive information in the
momentum characteristic (except for the component of momentum predictable based

5 Our analysis can be readily extended to the case where J > N , and Filipovic and Schneider
(2024) do so. However, our primary interest lies in the case where J is relatively small, as we aim to
identify the conditions under which low-dimensional heuristic factor models, commonly used in many
empirical applications, can achieve mean-variance efficiency.

6 As an example that would violate this requirement, the law of one price would fail if the econo-
metrician included elements of zt+1 in Xt. Conditional on this look-ahead information, arbitrage
opportunities would seemingly exist.
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on book-to-market). In our analysis, we do not require that the characteristics in X t

exhaustively cover all characteristics that predict stock returns. Instead, our focus is
on finding factors that span the SDF that prices assets conditional on a possibly small
set of characteristics collected in X t.

We assume throughout that the law of one price holds and hence an SDF exists.
Conditional on the econometrician’s information, the maximum squared conditional
Sharpe ratio that can be obtained from the N individual assets then is finite and
given by µ′

tΣ
−1
t µt. The SDF that uses this maximum squared conditional Sharpe ratio

portfolio as risk factor,

Mt+1 = 1− δ′
t (zt+1 − µt) , δt = Σ−1

t µt, (4)

prices the N assets conditionally, i.e., E[Mt+1zt+1|X t] = 0. This is the unique SDF
(with mean of unity) in the span of excess returns. We refer to it from now on simply
as the SDF.

Our analysis focuses on characteristics-based factors. These factors are generally
constructed with an N×J portfolio weight matrix W t, where the weights are functions
of the characteristics X t, and possibly also of Σt. Using these weights, one can form
J factor portfolios as

f t+1 = W ′
tzt+1, (5)

with µf,t = W ′
tµt and Σf,t = W ′

tΣtW t. We assume that weights are such that Σf,t

is positive definite.
Our aim is to understand under which conditions different specifications of the

weights W t produce factors that span the conditional mean-variance frontier. Spanning
the conditional mean-variance frontier is equivalent to the factors’ maximum squared
conditional Sharpe ratio,

µ′
f,tΣ

−1
f,tµf,t = µ′

tW t(W
′
tΣtW t)

−1W ′
tµt, (6)

attaining the maximum squared conditional Sharpe Ratio obtainable from the indi-
vidual assets. Our results below rely on the following lemma that provides conditions
under which this is true.

Lemma 1. The maximum squared conditional Sharpe ratio of the factors f t+1 =

W ′
tzt+1 is equal to the maximum squared conditional Sharpe Ratio of the individual

assets, i.e.,

µ′
tΣ

−1
t µt = µ′

tW t (W
′
tΣtW t)

−1
W ′

tµt (7)
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if and only if

µt = ΣtW tbt (8)

for some J × 1 vector bt.

Proof. See Appendix A.1
Condition (8) has an intuitive asset pricing interpretation. It states that asset

risk premia, µt, must come from covariances of asset returns with the factors, ΣtW t.
Alternatively, if one pre-multiplies the equation with Σ−1

t , then it states that SDF risk
prices or mean-variance efficient (MVE) portfolio weights, Σ−1

t µt, must be spanned by
factor weights W t.

If the factors span the conditional mean-variance frontier, then they span the SDF
that prices the individual assets:

Corollary 1. Lemma 1 implies that if and only if equation (8) holds, an SDF can be

represented in terms of the J factors:

Mt+1 = 1− b′t
(
f t+1 − µf,t

)
. (9)

This SDF perfectly prices the excess returns zt+1, that is, E [Mt+1zt+1|X t] = 0. This

SDF representation is equivalent to a conditional beta-pricing representation

µt = βtµf,t, (10)

where βt = Σzf,tΣ
−1
f,t .

Equipped with this result, we can now explore under which assumptions about µt

and Σt various heuristic methods of factor construction that have appeared in the
literature yield factors that span the SDF.

Our baseline assumption about expected returns is motivated by a large body of
work that has documented cross-sectional relationships between expected return and
firm characteristics:

Assumption 1. (Linearity of expected returns in characteristics)

µt = X tϕ (11)
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for some J × 1 vector ϕ.

The matrix X t collects the characteristics that a researcher has chosen to use in
factor construction. Assuming an exact linear relationship between µt and X t ensures
that heuristic factors with weights linear in X t do not fall short of reaching the mean-
variance frontier of individual assets merely because linear functions of X t do not
accurately capture expected returns conditional on X t. By eliminating this source of
failure, Assumption 1 allows us to focus on the mean-variance inefficiency that can arise
from the omission of individual asset covariance information in factor construction.

Assumption 1 also accommodates the case in which a researcher works with non-
linear models, as the characteristics in X t can then represent the nonlinear functions
of underlying original characteristics used by the researcher in constructing the fac-
tors (e.g., as in Didisheim et al. (2023)). In this case, too, it is interesting to explore
the conditions under which a factor construction approach that excludes information
about individual asset covariances can still produce factors that span the mean-variance
frontier of individual assets.

The assumption that the coefficient vector ϕ is time-invariant does not play any
role in our theoretical analysis, as all of it is focused on conditional mean-variance
efficiency, with all moments conditioned on X t. Conditionally, a time-varying ϕ would
be a vector of known constants. Whether ϕ is time-varying only becomes a concern in
empirical work when a researcher seeks to infer the properties of conditional moments
of factor returns from the properties of unconditional moments. The factor models
in the literature that we aim to evaluate typically employ characteristics that have
been transformed into cross-sectional ranks. This transformation retains information
about cross-sectional differences in expected returns embodied in the original charac-
teristics, but it destroys any time-series predictive information that they may have,
which means that even if ϕ is allowed to be a function of X t, it ends up being time-
invariant. Assumption 1 with constant ϕ is therefore a better representation of this
typical situation.

Examination of equation (8) makes clear that special conditions on µt or Σt must
hold for factor weights W t that depend only on X t but not Σt to satisfy this equation.
We now explore these conditions in the case where µt is a function of X t, as specified
in Assumption 1. An alternative perspective is that µt might depend on Σt in just
the right way, µt = ΣtX tϕ, so that W t = X t satisfies (8). We discuss this case in
Appendix B. Given the large body of empirical work that documents relationships
between characteristics and future returns and the relative paucity of work that finds
empirical links between functions of Σt and future returns in the cross-section, we
believe Assumption 1 is the empirically more relevant case for the theoretical analysis.
Our empirical tests, however, are able to speak to the empirical validity of equation
(8) in either case.
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2.1. Factor representation of the SDF: GLS factors and trans-
formations thereof

As a benchmark for understanding when and why heuristic factor models span or do
not span the SDF, we first show that the SDF in (9) has a J-factor representation
under Assumption 1:

Proposition 1. Assumption 1 is equivalent to the statement that an SDF given by (9)

with characteristics-based factors

f t+1 = S′
tX

′
tΣ

−1
t zt+1, (12)

and prices of risk

bt = S−1
t ϕ, (13)

where St is any nonsingular J × J transformation matrix, perfectly prices the excess

returns zt+1, that is, E [Mt+1zt+1|X t] = 0.

Proof. See Appendix A.2
Thus, when there is a linear relationship between J characteristics and conditional

expected return, the SDF is spanned by J characteristics-based factors that exactly
explains these conditional expected returns with zero pricing errors. Proposition 1
therefore highlights that there is no economic difference between a model that specifies
expected returns directly as linear function of characteristics as in Assumption 1 and
a characteristics-based factor pricing model. One can always be mapped perfectly into
the other one, with equivalent pricing implications. Therefore, a horse race between
direct linear prediction of zt+1 by X t and a factor pricing model, e.g., as in as in Daniel
and Titman (1997) and Davis et al. (2000) as well as many other papers, does not have
economic content. If factors are constructed as in Proposition 1, there is no difference
in expected returns implied by direct linear prediction and the factor model. If factors
are constructed in a heuristic way that does not exactly follow the prescription of
Proposition 1, then there can be a difference, but this just reflects the misspecification
of the heuristic factors. The difference does not have economic content (it does not
discriminate between “rational” and “behavioral” asset pricing theories, for example).

Empirical asset pricing researchers often like to work with beta-pricing specifications
and, in particular, with beta-pricing specifications that can be conditioned down to
deliver predictions for unconditional expected returns without elaborate estimation
of time-varying conditional moments. If we choose St =

(
X ′

tΣ
−1
t X t

)−1, then we
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obtain an SDF with factors given by GLS cross-sectional regression slopes, f t+1 =(
X ′

tΣ
−1
t X t

)−1
X ′

tΣ
−1
t zt+1. Factor risk prices are time varying, bt =

(
X ′

tΣ
−1
t X t

)
ϕ,

but factor means are constant, µf,t = ϕ and factor betas are equal to characteristics,
βt = X t.

The GLS slope factors in this example are the GLS counterpart to the OLS cross-
sectional slope factors in Fama (1976) and Fama and French (2020), and are similar
to the “characteristics as covariances” factors in Lemma 1 of Kelly et al. (2023). The
GLS factors are also similar to the “characteristic-efficient portfolios” in Daniel et al.
(2020), albeit here with time-varying X t and conditional moments of excess returns.

Which transformation matrix St to pick is a matter of convenience. If we choose
St = I, then we obtain f t+1 = X ′

tΣ
−1
t zt+1. In this case factor risk prices are constant,

bt = ϕ, while factor means are time-varying, µf,t =
(
X ′

tΣ
−1
t X t

)
ϕ. Covariances of

returns and factors are equal to characteristics, Σzf,t = X t.
Practical implementation of the SDF in Proposition 1 is of course difficult since

it involves the inversion of a large N × N conditional covariance matrix. Heuristic
approaches to factor construction exist that avoid this inversion problem. We now
want to find conditions that need to hold for these heuristic approaches to succeed in
spanning the SDF.

2.2. Heuristic factor construction: OLS factors and transforma-
tions thereof

Many heuristic methods construct factors by taking long positions in stocks with high
values of a characteristic and short positions in stocks with low values of a characteristic,
with the portfolio weight matrix and factors then taking the form

W t = X tSt, f t+1 = W ′
tzt+1, (14)

for some nonsingular matrix St. For example, St = I yields univariate factors with
weights that are proportional to characteristics as, e.g., in Kozak et al. (2020). With
characteristics defined as dummy variables for characteristics bins, portfolio sorts can
also be represented in this way. Another example are cross-sectional regression slope
factors. Fama and French (2020) use the insight of Fama (1976) that OLS cross-
sectional regression slopes are themselves portfolio returns. This is the case St =
(X ′

tX t)
−1.

Fama and French (2020) conjecture that the OLS factors yield an “asset pricing
model that can be used in time-series applications.” In other words, they conjecture
that for N assets with OLS factor betas βt, the pricing relation µt = βtµf,t holds.
However, such a pricing relationship does not generally hold for OLS factors. As we
show now, this is true only if the covariance matrix takes a special form.

Before presenting the general result, we illustrate the issue in a simplified example.

11



Example 1. Let xt be a vector of a single characteristic that is the only one relevant

for expected returns, i.e., µt = xtϕ. For simplicity, assume x′
txt = 1. We can always

write the conditional covariance matrix as7

Σt = xtψ1,tx
′
t +U tΩtU

′
t. (15)

Now consider a heuristic factor constructed as ft+1 = x′
tzt+1. The covariances of this

factor with individual stocks are Σzf,t = Σtxt, and hence

Σzf,t = xtψ1,t + U tΩtU
′
txt︸ ︷︷ ︸

Unpriced risk contamination

. (16)

If there was only the first term on the right-hand side, these covariances would be

perfectly linear in xt and hence they would perfectly explain µt = xtϕ. But because of

the second term, covariances are contaminated by unpriced risk exposures and therefore

not perfectly linear in xt, unless U ′
txt = 0. This means that for ft+1 to correctly price

individual stocks, xt must be orthogonal to loadings on systematic factors other than

ft+1 that appear in the covariance matrix.

We next show the general version of this result, with conditions that are not only
sufficient, but also necessary.

Proposition 2. Suppose Assumption 1 holds and let W t = X tSt. Then, for any

nonsingular J × J matrix St, the maximum squared conditional Sharpe ratio of the

factors f t+1 = W ′
tzt+1 is equal to the maximum squared conditional Sharpe Ratio

of the individual assets, for all vectors ϕ in Assumption 1, if and only if there exist

7 To construct this decomposition, regress zt+1 − µt on the factor excess return gt+1 =
x′
tΣ

−1
t (zt+1−µt). The conditional covariances of this factor return with zt+1 are equal to xt and the

conditional factor betas are xt vart(gt+1)
−1, and so we can write zt+1−µt = xt vart(gt+1)

−1gt+1+et+1

where et+1 is a vector of residuals uncorrelated with gt+1. Hence, Σt = xtψ1,tx
′
t + vart(et+1) with

ψ1,t = vart(gt+1)
−1. Writing vart(et+1) in terms of its eigendecomposition, using only the eigenvectors

associated with nonzero eigenvalues, completes the construction.
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conformable matrices Ψt, Ωt, and an N × (N − J) matrix U t for which

U ′
tX t = 0, (17)

such that8

Σt = X tΨtX
′
t +U tΩtU

′
t. (18)

Proof. See Appendix A.3.
Similar to Example 1, we can interpret the condition (17) in Proposition 2 as

a requirement that any potential omitted systematic factors (as in Giglio and Xiu
(2021)) have loadings that are orthogonal to the loadings on the OLS factors.9 If this
requirement holds, then factor betas are perfectly aligned with expected returns and
hence the SDF with factors f t+1 perfectly prices individual stocks. In the case of OLS
factors, with St = (X ′

tX t)
−1, factor betas are then equal to characteristics, βt = X t,

factor risk premia are constant, µf,t = ϕ, and prices of risk are bt = Ψ−1
t X tϕ.

Proposition 2 shows that heuristic factor models with characteristics-based factors
will typically not span the SDF that prices individual stocks. Unless condition (17)
holds, aggregating individual stocks into OLS factors, or transformations thereof, leads
to a deterioration of the investment opportunity set. Importantly, this is not because
expected returns depend on other characteristics that are not used in factor construc-
tion. Assumption 1 implies that the characteristics used in factor construction fully
explain expected returns. Instead, the deterioration is due to the omission of informa-
tion on stock covariances in factor construction.

Violations of condition (17) are more likely for factor models that are based on
a small number of characteristics. When more characteristics are included in X t,
condition (17) should be more likely to hold. We can illustrate this with our earlier
single-characteristic example.

8 Without the restriction (17), the decomposition in (18) would always exist. Construction of
this decomposition is a straightforward generalization of the construction we present in Example 1,
footnote 6, with Xt in place of xt. In certain special cases of limited empirical relevance, such as
when ϕ = 0, the factors can achieve mean-variance efficiency even if (17) and (18) do not hold, but
for mean-variance efficiency to hold for arbitrary ϕ that may be given empirically, the restriction is
necessary, as stated in the proposition.

9 For comparison with factor models that feature idiosyncratic risk it may also be useful to note
that the condition in Proposition 2 is equivalent to

Σt = XtΨ̃tX
′
t + Ũ tΩ̃tŨ

′
t + σ2

t I, Ũ ′
tXt = 0. (19)

See Lu and Schmidt (2012) Theorem 1(F) and 1(F’).
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Example 2. Continuing with Example 1, this time with two characteristics xt and yt,

we can write the covariance matrix as

Σt = xtψ1,tx
′
t + ytψ2,ty

′
t +U tΩtU

′
t. (20)

We assume U ′
txt = U ′

tyt = 0, while x′
tyt ̸= 0. We further assume that only xt is

relevant for expected returns, i.e., µt = xtϕ. Even so, if xt is now used as the only

characteristic in forming the factor ft+1 = x′
tzt+1, the covariances of individual stocks

with this factor are contaminated by unpriced risk:

Σzf,t = xtψ1,t + ytψ2,ty
′
txt︸ ︷︷ ︸

Unpriced risk contamination

. (21)

In contrast, if yt is observable and included in the OLS factor construction, with an

expanded characteristics matrix X t = (xt yt), then the relevant condition is U ′
tX t =

0, which holds. Hence, inclusion of yt among the characteristics purges unpriced risk

and makes the OLS factors mean-variance efficient, even though xt alone fully explains

expected returns.

More generally, we can use the result in Lu and Schmidt (2012) that the conditions
in (17) and (18) are equivalent to J eigenvectors of Σt being spanned by X t. The
matrix U t then contains linear combinations of the eigenvectors not spanned by X t.10

With only a few characteristics included in X t, it is unlikely that the J columns of
X t exactly span J eigenvectors. Effectively, for each eigenvector, this is like asking
whether a regression of the N elements of the eigenvector on the J variables in X t has
perfect fit. Clearly, the more characteristics we add, the better the fit. In this sense,
it is more likely that U ′

tX t = 0 holds if X t contains more characteristics.

10 If Qt and Λt are the matrix of eigenvectors and diagonal matrix of eigenvalues of Σt, respectively,
and Qt = (XtBt : U t) where the columns of XtBt, with nonsingular Bt, are the J eigenvectors
spanned by Xt and U t are the eigenvectors not spanned by Xt, then we have

Σt = XtBtΛ1,tB
′
tX

′
t +U tΛ2,tU

′
t (22)

which maps into (18) with BtΛ1,tB
′
t = Ψt and Λ2,t = Ωt. Moreover, since eigenvectors are orthogo-

nal, B′
tX

′
tU t = 0 and hence U ′

tXt = 0.
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Moreover, with a larger number of characteristics it is more likely that X t spans
very well the relatively small number of eigenvectors associated with large eigenvalues,
i.e., the major sources of stock return covariance. In this case, even if X t does not
span J eigenvectors perfectly, spanning the few important ones very well may render the
violations of U ′

tX t = 0 quantitatively unimportant. OLS factors, or transformations
thereof, may then span the SDF approximately.

Importantly, for additional characteristics to be helpful in ensuring that U ′
tX t = 0

holds approximately, these additional characteristics do not necessarily need to con-
tribute to variation in expected returns. If they help to span major sources of covari-
ances, they will help OLS factors, or transformations thereof, to span the SDF, even
without contribution to variation in expected returns.

If a researcher has chosen to work with a very large number of characteristics such
that J ≥ N and the rank of X t equals N , then aggregating individual stocks into OLS
factor portfolios completely retains the covariance information. The eigenvectors of the
OLS factor covariance matrix Σf,t associated with nonzero eigenvalues in this case span
the same space as the eigenvectors of Σt. Under these circumstances, the condition
U ′

tX t = 0 in Proposition 2 is inherently met because U t = 0.11 As a consequence,
OLS factors are mean-variance efficient.

The bottom line is that substantial inefficiency of OLS factors relative to GLS
factors is more likely to occur for small-scale factor models that include only a small
number of characteristics-based factors. We investigate this further in our empirical
analysis in Section 4.

2.3. Hedged heuristic factors

If condition U ′
tX t = 0 in Proposition 2 does not hold, any factors with weights that

are a nonsingular transformation of X t load on unpriced risks, i.e., risk exposure that
is not compensated with higher excess returns. This prevents the factors from reaching
the mean-variance frontier.

Using the GLS factors, or transformations thereof, following Proposition 1 would
avoid contamination of factors with unpriced risks, but their construction requires in-
version of the large covariance matrix Σt (that would have to be estimated in practice).
For this reason, it is useful to ask whether there exist alternative factor specifications
that use some information about covariances to find characteristics-based factors that
span the SDF, but without requiring estimation and inversion of the whole covariance
matrix Σt. These factors will be hedged factors because they hedge unpriced exposures

11 This is easiest to see in the J = N case where Σf,t = (X ′
tXt)

−1X ′
tΣtXt(X

′
tXt)

−1 and hence
Σt = XtΣf,tX

′
t. In the J > N case, Σt can be written in terms of N linear combinations of the J

columns of Xt and the conditional covariance matrix of the corresponding N linear combinations of
OLS factors.
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of the original factors.
As a first step, in our earlier Example 2, we can clearly see what it would take to

purge unpriced risk from OLS factors constructed based on the single characteristic xt.

Example 3. Continuing with Example 2, consider the hedged factor ft+1 = h′
tzt+1

where

ht = xt − yt(y
′
tyt)

−1y′
txt. (23)

Since x′
tyt ̸= 0 was causing the distortion with unpriced risk of the OLS factor ft+1 =

x′
tzt+1 in Example 2, removing the projection of xt on yt from xt in the hedged factor

portfolio weights removes this unpriced risk such that y′
tht = 0 holds in addition to

U ′
tht = 0. Covariances of individual stocks with the hedged factor are then proportional

to xt and hence perfectly aligned with µt.

However, if yt is not observable, the direct construction of ht in this example is not
feasible. Hedging methods extract the information about yt indirectly from properties
of covariances. As we show, first for our simplified example, then in the general case,
the factor hedging method of Daniel et al. (2020) (DMRS) makes it feasible to construct
hedged factors when the conditional covariance matrix satisfies certain conditions.

Example 4. Consider the factor ft+1 = x′
tzt+1 and recall from Example 2 that indi-

vidual stocks conditional covariances with this factor take the form

Σzf,t = xt × scalar + yt × scalar. (24)

The DMRS hedging procedure proceeds in the following steps:

1. Regress conditional covariances of individual stocks with the factor cross-sectionally

on xt to obtain residuals vt × scalar, where vt = yt −xt(x
′
txt)

−1x′
tyt. Use these

residuals as hedging portfolio weights W h,t = vt × scalar.

2. Compute stocks’ conditional covariances with the hedging factor, v̂t = yt×scalar.
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3. Regress xt cross-sectionally on v̂t and calculate the residuals:

ĥt = xt − v̂t(v̂
′
tv̂t)

−1v̂′
txt (25)

= xt − yt(y
′
tyt)

−1y′
txt. (26)

Construct the hedged factor as fh,t+1 = ĥ′zt+1. Stock’s conditional covariances

with fh,t+1 are equal to xt × scalar and are thus are purged of the unpriced risk

distortion associated with yt.

The above procedure never uses yt directly. Instead, it backs out a vector v̂t

proportional to yt in step 2 from information about covariances.
The general version of the DMRS hedging procedure is a straightforward extension

of the three steps in the above example. This leads to hedged factor weights

Ĥ t = X tSt − V̂ t(V̂
′
tV̂ t)

−1V̂ ′
tX tSt (27)

that are the analog to those in (25). In Appendix C.1 we provide a detailed description
of the steps in constructing the hedged factor weights in the general case.

In Example 4 the hedging approach works perfectly, but this was under very special
assumptions about the conditional covariance matrix: All the unpriced risk distortion
originated from a single vector yt. Existing research has not yet provided the conditions
that are sufficient for hedged factors with weights as in (27) to span the SDF. In the
following proposition we provide these conditions.

Proposition 3. If the matrices U t and Ωt in (18) are such that there exists a decom-

position

U tΩtU
′
t = Y tΓtY

′
t +EtΦtE

′
t, (28)

where Y t is an N × J matrix of full column rank, Y ′
tX t is full rank, RtY t has full

column rank, E′
tX t = 0, E′

tY t = 0 and Γt is nonsingular, then the maximum squared

conditional Sharpe ratio of the hedged factors f t+1 = Ĥ ′
tzt+1 with Ĥ t as defined in

(27) is equal to the maximum squared conditional Sharpe Ratio of the individual assets.

Proof. See Appendix A.5.
The rank requirements for several matrices in Proposition 3 have an economic in-

terpretation. That Y ′
tX t has full rank and RtY t has full column rank ensures that
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the hedging portfolio weight vectors are linearly independent. One could relax these
rank requirements by building in a dimension-reduction step that removes linear de-
pendencies. However, for our purposes here, the benefits from greater generality of this
approach would not be worth the costs of additional expositional complexity.

What do we gain from the hedging procedure? Comparing the conditions in Propo-
sition 3 with (17) and (18) in Proposition 2, we can see that the conditions on the
covariance matrix that are required to hold for the hedged factors to span the SDF
are weaker than those required for the OLS factors (or nonsingular transformations
thereof) to span the SDF. While Proposition 2 requires the columns of X t to be or-
thogonal to the columns of U t, the conditions in Proposition 3 allow violations of this
orthogonality condition as long as there are at most J linearly independent sources of
such non-orthogonality as collected in the J columns of the matrix Y t. In the J = 1
case in Example 4, there was only one such source of non-orthogonality in the form
of the vector yt. If these conditions hold, it is possible to use the hedging procedure
to completely purge unpriced risks from OLS factors and achieve the mean-variance
efficiency of GLS factors without having to construct and invert the full conditional
covariance matrix of individual stock returns.

2.4. Iterated hedging

When Y t has more than J columns, the conditions of Proposition 3 do not hold, and
factors based on the hedged factor weights Ĥ t in (27) may still be contaminated with
unpriced risks. However, by iterating on the hedging procedure, we can solve this
problem. Appendix C.2 shows in detail how a second round of hedging, now applied
to the hedged factors, can remove unpriced risks from factors under weaker conditions
than those that are required for a single round of hedging to do the job.

There is no reason to necessarily stop after a second round of hedging. We do not
show formal results on this, but from the logic of the results on the first two rounds
of hedging, it should be clear that further rounds of hedging would remove additional
sources of unpriced risk contamination. When working with population moments, this
should further raise the maximum squared conditional Sharpe Ratio of the hedged
factors and hence get them closer to spanning the SDF. Whether this is also true in a
finite sample with estimated moments is not clear. At some point, further hedging may
be counterproductive and bring in estimation error contamination rather than removing
unpriced risk contamination. After all, doing many iterations of the hedging procedure
should be no different than constructing GLS factors by inverting an estimate of the
conditional covariance matrix, which may run into challenges unless unless N is small
relative to T . We investigate this further in Section 4.
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2.5. Summary

When conditional expected returns are linear in firm characteristics, aggregation of
individual stocks into characteristics-based factor portfolios without incorporating in-
formation from the conditional covariance matrix of individual stock returns leads to a
deterioration of the investment opportunity set unless the conditional covariance ma-
trix satisfies certain conditions. These conditions are more likely to hold in large-scale
factor models that use many characteristics, but for small-scale factor models that are
common in empirical asset pricing research, the violations of these conditions could
make the factors fail to reach the mean-variance frontier of individual stock returns.
Methods for hedging unpriced risks in factors allow a partial relaxation of these condi-
tions, especially if hedging procedures are applied iteratively. The hedging procedure
brings in partial information about the conditional covariance matrix, but does not
require knowledge of the full conditional covariance matrix.

The hedging approach also can be used to empirically evaluate whether the condi-
tional covariance matrix satisfies the conditions for characteristics-based factors to be
mean-variance efficient. If hedging improves the squared Sharpe ratio of a candidate
set of factors, then the original factors are not mean-variance efficient. This is the basis
for our empirical work in Section 4.

3. Dimensionality reduction
So far we have discussed factor models where the pricing information in J characteristics
is captured by J factors in the SDF. Dimensionality reduction methods seek a more
parsimonious representation of the SDF with a smaller number of K < J factors. In
particular, some methods aim to achieve this by constructing factors based on linear
combinations of the characteristics in X t. Kelly et al. (2019) and Kim et al. (2021)
are examples of this approach. As we show now, for this dimensionality reduction to
be possible, without degrading the investment opportunity set, the covariance matrix
of individual stock returns has to satisfy certain conditions. Existing research relies on
strong assumptions to ensure these conditions are met, such as, for example, a latent
factor structure where the covariance matrix of individual stock returns only has K
systematic factors, but it is not clear that such strong assumptions are necessary.

We first present necessary and sufficient conditions on the conditional covariance
matrix that need to hold such that dimension reduction is possible without loss of
pricing information. Then we show that, under these conditions, various approaches
that have appeared in the literature are actually equivalent or closely related.
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Corollary 2. Suppose expected returns are given by

µt = X tQtϕ, (29)

where Qt is a J ×K matrix with K ≤ J , and let W t = X tQtSt. Then the maximum

squared conditional Sharpe ratio of the factors f t+1 = W ′
tzt+1, for any nonsingular

K × K matrix St, is equal to the maximum squared Sharpe Ratio of the individual

assets if and only if there exist conformable matrices Λt, Ωt, and a matrix U t for

which

U ′
tX tQt = 0, (30)

such that

Σt = X tQtΛtQ
′
tX

′
t +U tΩtU

′
t. (31)

Proof. Directly follows from Proposition 2 by using X tQt in place of X t.
We have achieved dimension reduction because there are now K factors in f , not J .

This is made possible by the fact that the factor component of the covariance matrix
related to X t is now a lower-dimensional X tQt, which is N ×K, with K ≤ J , rather
than the larger N × J matrix X t that we had in Proposition 2. And Λt is a K ×K
matrix rather than the J × J matrix Ψt in Proposition 2.

How can we find Qt to construct the factors f? As we show now, if we make a
somewhat stronger assumption than (30), namely that U ′

tX t = 0, we can obtain Qt

through principal component analysis (PCA). Under this assumption, OLS factors, for
instance, and transformations thereof span the SDF. PCA applied to OLS factors can
then extract Qt. More precisely, to extract Qt as principal components, we need to
add additional identification assumptions on Qt and Λt. These assumptions pin down
a specific rotation of Qt, but they do not affect the pricing implications of the factor
model. With different choices of identifying assumptions, we then obtain conditional
versions of two recently proposed methods of dimension-reduced factor construction.12

Example 5. (IPCA) Suppose U ′
tX t = 0, Q′

tQt = I and Λt is diagonal with descend-

12 To extract Qt, one could potentially also employ the methods of Lettau and Pelger (2020a)
to exploit the fact that not only the covariance matrix of OLS factors is informative about Qt, but
expected returns are as well, since (30) implies that the OLS factors have expected return µf,t = Qtϕ.
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ing diagonal entries.13 We can then obtain Qt and Λt from an eigendecomposition of

the conditional covariance matrix of OLS factor returns, because it factors as

(X ′
tX t)

−1
X ′

tΣtX t (X
′
tX t)

−1
= QtΛtQ

′
t, (32)

where Qt, given the assumptions above, becomes a matrix of eigenvectors of this co-

variance matrix associated with the K non-zero eigenvalues. Suppose further that

St = (Q′X ′
tX tQ)−1. Then we obtain a conditional version of the IPCA factors of

Kelly et al. (2019):

f IPCA,t+1 = (Q′
tX

′
tX tQt)

−1Q′
tX

′
tzt+1. (33)

Our estimator can be also viewed as a conditional version of the first of two first-
order conditions in Kelly et al. (2019) that define the instrumented principal com-
ponents analysis (IPCA) estimator. We can also show that a conditional version of
their second first-order condition (their eq. 7) holds in terms of population moments.
If it holds, then the right-hand side their second first-order condition should equal
vec(Qt) when evaluated with the factors in (33) and under the conditions of Corollary
2. Evaluating their second first-order condition, this is indeed what we obtain:(

X ′
tX t ⊗ Et[f t+1f

′
t+1]

)−1 Et

[(
X ′

t ⊗ f t+1

)
zt+1

]
=

(
X ′

tX t ⊗ Et[f t+1f
′
t+1]

)−1
vec(Et[f t+1z

′
t+1]X t)

= vec
(
Et[f t+1f

′
t+1]

−1Et[f t+1z
′
t+1]X t (X

′
tX t)

−1
)

= vec(Qt), (34)

where for the last step we evaluated the conditional expectations using (33), (29), (31),
and (30). Hence, factors constructed as in (33) with Qt obtained as eigenvectors of the
OLS factor return covariance matrix in (32) solve both first-order conditions, i.e., they
are indeed the IPCA factors.14

13 The last two assumptions correspond to identification assumption in Kelly et al. (2019): Γ′
βΓβ =

IK and cov(f t) has only descending diagonal entries (their notation).
14 The assumption of time-constant Qt and Λt can justify working with a constant Q extracted

from an average conditional, or approximately unconditional, covariance matrix. Working through the
first-order condition in (34) expressed in terms of unconditional expectations (the population analog
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Kelly et al. (2019) show that in the case of orthonormalized characteristics, IPCA
is equivalent to PCA on returns managed portfolios with weights X ′

t. Our result here
shows that IPCA is more generally equivalent to PCA on managed portfolios, even in
the case where characteristics are not orthonormalized, if the managed portfolios are
constructed as OLS factors. In particular, applying PCA to OLS portfolios recovers
Qt. By applying this matrix to univariate portfolios X ′

tzt+1 and further transforming
them by an OLS factor (as in (33)), yields our version of the IPCA estimator.15

The OLS factor population covariance matrix that we apply PCA to in (32) is
singular if K < J as it is a J × J matrix with only K non-zero eigenvalues. The
matrices Λt and Qt in our notation contain only the non-zero eigenvalues and the
eigenvectors associated with the non-zero eigenvalues. With an estimated covariance
matrix in a finite sample, the truly zero eigenvalues would not be exactly zero but
likely very small.

Example 6. (PPCA) Suppose U ′
tX t = 0, Q′

tX
′
tX tQt = I and Λt is diagonal with

descending diagonal entries.16 We can then obtain Qt and Λt from an eigendecomposi-

tion of the conditional covariance matrix of univariate factor returns constructed using

orthonormalized characteristics, because it factors as

(X ′
tX t)

− 1
2 X ′

tΣtX t (X
′
tX t)

− 1
2 = (X ′

tX t)
1
2 QtΛtQ

′
t (X

′
tX t)

1
2 , (35)

where Gt = (X ′
tX t)

1
2 Qt is orthonormal by assumption and thus can be recovered

as a matrix of eigenvectors of this covariance matrix associated with the K non-zero

to the sample averages in KPS), we the obtain vec(Q):[
E
(
X ′

tXt ⊗ Et

[
fKPS,t+1f

′
KPS,t+1

])]−1 E
[(
X ′

t ⊗ fKPS,t+1

)
zt+1

]
=

[
E
(
X ′

tXt

)
⊗Λ

]−1
vec

(
E
[
Et[fKPS,t+1z

′
t+1]Xt

])
=

[
E
(
X ′

tXt

)
⊗Λ

]−1
vec

(
ΛQE

(
X ′

tXt

))
= vec(Q).

15 A related factor construction approach is studied in Chen et al. (2023). Like here in (32), they
extract eigenvectors Q from the OLS factor portfolio return covariance matrix, but they then use Q

to form linear combinations of OLS factors as Q′ (X ′
tXt

)−1
Xtzt+1 rather than the weights in (33)

and their Q is constant, not time-varying.
16 The last two assumptions correspond to identification assumptions stated in assumption 3 of

Kim et al. (2021). Our assumption that U ′Xt = 0 is the population version of their assumption 2
(ii), which states that factor model residuals and Xt are, asymptotically, cross-sectionally orthogonal.
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eigenvalues. We get Qt = (X ′
tX t)

− 1
2 Gt. Suppose further that St = I. Then we obtain

a conditional version of the PPCA factors of Kim et al. (2021):

fPPCA,t+1 = G′
t (X

′
tX t)

− 1
2 X ′

tzt+1 (36)

= (Q′
tX

′
tX tQt)

−1
Q′

tX
′
tzt+1 = Q′

tX
′
tzt+1. (37)

The expression for fPPCA,t+1 in (37) above is a conditional version of the factors in
Kim et al. (2021) obtained from a cross-sectional regression of stock returns on their
factor loadings Gβ(X t) which we parameterize as linear here, Gβ(X t) = X tQt. To
see this, note that Kim et al. (2021) identify Gβ(X t) via a PCA on projected returns,
X t (X

′
tX t)

−1
X ′

tzt+1. Under our assumption in (31), the covariance matrix of these
returns is equal to X tQtΛtQ

′
tX

′
t. Because X tQt is orthonormal, Kim et al.’s PCA

solution, therefore, recovers Gβ(X t) = X tQt and their factors match ours in (37). The
expression in (36) shows that we can alternatively identify these factors via a simple
PCA on univariate portfolio returns (rather than projected individual stock returns)
constructed using orthonormalized characteristics, to obtain Gt.

Overall, the results in this section show that there is a great deal of similarity
in seemingly different recently proposed methods for dimension reduction. Our earlier
results on the conditions required for characteristics-based factors to span the SDF pro-
vide a basis to get to get to these dimension-reduction approaches in a straightforward
way by applying PCA to a certain set of characteristics-based portfolios.

4. Empirical analysis
Our analysis so far provides conditions on the conditional covariance matrix of indi-
vidual stock returns under which characteristics-based factors span the SDF. Do these
conditions hold empirically for various combinations of characteristics-based factors
used in the prior literature?

Directly answering this question by comparing the maximum squared Sharpe ratio
attainable with OLS factors to the maximum squared Sharpe ratio of GLS factors is
difficult because constructing GLS factors requires the estimation and inversion of a
large conditional covariance matrix for an unbalanced panel of thousands of stocks. We
provide two empirical solutions to this problem. First, we employ a heuristic approach
for estimating this covariance matrix, which we use to construct approximate GLS
factors. The motivation for this approach is that using approximate GLS factors gives
us a lower bound on possible improvements in the maximum squared Sharpe ratio that
can be achieved. We find that these improvements are substantial, suggesting that our
approximate covariance matrix construction contains empirically useful information.
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Second, we use our earlier results on iterated factor hedging to shed more light on this
issue. The logic underlying the hedging approach is that if a set of OLS factors does
not span the SDF, then hedging the factors should improve the maximum squared
Sharpe ratio. If a set of OLS factors already spans the SDF, then factor hedging
should not yield an improvement. In fact, empirically, with estimated moments that
are contaminated with estimation error, factor hedging might lead to a deterioration
in the Sharpe ratio.

4.1. Empirical framework

The focus of our empirical approach is to estimate the difference between the maximum
squared Sharpe ratios that are attainable with GLS factors, or with factors improved
via iterated hedging, which we now label f ∗, and OLS factors, or transformations of
these, which we label f :

dt = Et[f
∗
t+1]

′ vart(f
∗
t+1)

−1 Et[f
∗
t+1]− Et[f t+1]

′ vart(f t+1)
−1 Et[f t+1] (38)

Following the theory in the previous sections, if U ′
tX t = 0 in Proposition 2 does not

hold, then the OLS factors are not mean-variance efficient and hence dt > 0.
One complication for empirical implementation is that (38) is a difference in condi-

tional squared Sharpe ratios. Empirically, we will be looking at differences in uncondi-
tional squared Sharpe ratios. However, in our setting, this issue is less significant than
it may appear. Most importantly, under the null hypothesis that U ′

tX t = 0 holds, we
have f ∗

t+1 = f t+1, and hence not only conditional squared Sharpe ratios in (38) are
equal, but unconditional squared Sharpe ratios are equal as well. We can therefore use
differences in unconditional squared Sharpe ratios to test the null hypothesis. When
the null hypothesis does not hold, then the difference in unconditional squared Sharpe
ratios may not be exactly equal to E[dt], but there are reasons to believe that the
difference in unconditional squared Sharpe ratios should provide a good approximation
of E[dt].

First, regarding conditional means of factors in (38), under Assumption 1 both
GLS and OLS factors have constant conditional expected excess returns equal to ϕ.
For this reason, their unconditional covariance matrices var(f ∗

t+1) and vart(f
∗
t+1) are

equal to the corresponding expected conditional covariance matrices, E[vart(f ∗
t+1)] and

E[vart(f ∗
t+1)]. The unconditional squared Sharpe ratio difference between GLS and

OLS factors then differs from E[dt] only because the inverse of the expected variance is
not equal to the expected value of the inverse variance and the two sets of factors may
have different magnitude of this Jensen’s inequality wedge. That said, for factors that
are not of the GLS or OLS cross-sectional regression slope type, or if Assumption 1 does
not hold with constant ϕ for the chosen set of characteristics, conditional factor means
may have some time-variation that can generate some differences between unconditional
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and average conditional squared Sharpe ratios.
Second, it is important to recall that conditional moments in our theoretical analysis

are conditioned only on X t, not on other conditioning variables beyond those in X t.
The stock characteristics that appear in X t in our empirical analysis have been chosen
in earlier research primarily for their ability to predict cross-sectional differences in
excess returns between stocks, not for their ability to capture time-variation in first and
second moments. Moreover, we will use characteristics that are transformed into ranks,
not the original variables. This destroys much of the information about time-series of
moments that some variables may have. For example, time-variation in the level of
stocks’ average raw book-to-market equity ratio, or time-variation in the dispersion
of raw book-to-market ratios across stocks, may have information about conditional
first and second moments of returns. Transforming characteristics into ranks removes
the average level and dispersion of characteristics. Moments conditional on the rank-
transformed characteristics should therefore have little remaining time-variation. What
remains after ranking and standardizing is essentially just information about time-
varying correlations of characteristics, but everything else has been removed. For this
reason, unconditional squared Sharpe ratio differences should be close to E[dt].

Third, to remove the time-varying correlations of characteristics as well, we also
examine factors constructed based orthonormalized characteristics. After orthonor-
malization, X ′

tX t = I holds. With information about the time-variation in the
average value of raw characteristics, their dispersion, and their correlation removed,
there should not be much information left in characteristics that could generate time-
variation in conditional moments of factor returns.

In terms of sampling theory, our setting is standard. We use the difference in sample
unconditional maximum squared Sharpe ratios of factors f ∗ and f as an estimate of
the difference in population unconditional maximum squared Sharpe ratios. Barillas
et al. (2020) provide the asymptotic distribution of the sample unconditional maximum
squared Sharpe ratio difference that we use to test the null hypothesis of zero difference
in population.17

4.2. Data and factor construction

We use rank-transformed standardized stock characteristics from Kozak (2019) and
daily stock returns from July 1972 to December 2021. We apply several filters to
preserve characteristics with maximum data availability. In particular, we remove any
characteristics for which more than 25% of the observations in the panel of firms are
missing. We remove any time periods in the early part of the sample for which less

17 Pezzo et al. (2023) build on our population results to develop an asymptotic inference approach
based on reduced-rank regression that allows statistical inference on the coefficients that relate pricing
errors and factor loadings to stock characteristics.
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than 500 firms are available. We also remove firms whose past market caps do not
exceed 0.0025% of the aggregate stock market capitalization (e.g., firms with market
capitalizations less than $1 billion on a $40 trillion aggregate stock market valuation).
Lastly, we fill in any missing characteristics with their cross-sectional means, which are
equal to zero for standardized data.18 We collect the resulting 34 rank-transformed
standardized characteristics, including the unitary characteristic, for each of the stocks
in the monthly characteristics matrix X t.19 Our final dataset contains 594 months of
monthly characteristics and daily returns on 9,449 stocks.

We consider several types of factor constructions in line with our theoretic develop-
ments in the earlier part of the paper: (i) univariate factors with weights given by X ′

t;
(ii) orthonormalized factors with orthonormalized weights (X ′

tX t)
− 1

2X ′
t constructed

using the singular value decomposition;20 (iii) OLS factors with weights (X ′
tX t)

−1X ′
t;

and (iv) GLS factors with weights equal to (X ′
tΣ

−1
t X t)

−1X ′
tΣ

−1
t .

We update factor weights at the end of each month t. To avoid intra-month trading,
we evaluate all return-based performance metrics using stock returns aggregated to
monthly frequency, which corresponds to monthly buy-and-hold returns. For factor
hedging and cross-sectional regressions that rely on rolling covariance estimates, we
use the most recently available data up to that point in time (i.e., up until the end of
a prior month).

Our main analysis is conducted in full sample. We also report out-of-sample results
using a split-sample approach. Specifically, we split the sample into two parts: pre-2005
and 2005–present. When reporting out-of-sample maximum squared Sharpe ratios, we
use the sample covariance matrix of monthly factor returns as an estimate of the
unconditional factor covariance matrix and factor means as estimates of unconditional
expected excess returns on the factors, with both estimated in the pre-2005 sample of
returns. Combining information from covariances and means, we compute the MVE
portfolio weights which we then fix and apply to the entire 2005–present sample of
monthly stock returns. We then compute annualized unconditional squared Sharpe

18 We also use a dataset with no market capitalization filters, a dataset with imputed characteristic
values using a more advanced imputation method, as well as other datasets based on different and
broader sets of characteristics (see Appendix E).

19 Table 1 provides the list of characteristics we use.
20 Let the singular value decomposition of X be given by UΛV ′. Then orthonormalized charac-

teristics X(X ′X)−
1
2 can be constructed simply as UV ′. This orthogonalization is also known as

Löwdin symmetric orthogonalization, as well as Mahalanobis whitening or ZCA (zero-phase compo-
nent analysis; see Murphy (2023)). Unlike Gram-Schmidt orthogonalization, it treats all characteristics
symmetrically and has an appealing property that orthonormalized columns are the least distant from
the original columns of Xt (in the least squares sense). That is, it indicates the gentlest pushing of
each characteristic in the cross-section in order to get them to be orthogonal. Such orthogonalization,
therefore, partially preserves the economic identity of characteristics and factors which is a useful
property in our setting.
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ratios of these series in the out-of-sample period.

4.2.1. GLS factors

While GLS factors defined in Proposition 1 are mean-variance efficient, they are gener-
ally infeasible because their construction requires knowledge of the conditional covari-
ance matrix of individual stock returns, Σt. We propose a heuristic non-parametric
approach for estimating Σt. We compute rolling covariances in 3-year windows of daily
individual stock returns (up until the end of previous month), we use PCA to extract
30 principal components, and we approximate the conditional covariance matrix based
on this 30-factor model at every time t.21 We set idiosyncratic variances equal to the
cross-sectional mean of idiosyncratic stock-level variances for every time t.22

This approach is conceptually similar to what factor hedging is attempting to
achieve: extract information from the empirical covariance matrix. Hedging does not
estimate the full covariance matrix, however, while this method does.

Since our estimate of Σt will be subject to estimation error, the level of in maxi-
mum squared Sharpe ratio that we obtain with GLS factors constructed based on the
estimated Σt provides a lower bound on the improvement of the maximum squared
Sharpe ratio that would be attainable with knowledge of the true Σt. It is, there-
fore, an interesting empirical question how much improvement towards mean-variance
efficiency we can achieve in practice using the estimated Σt.

4.2.2. Hedged factors

As an alternative to GLS-based approaches that require estimates of the very large Σt

matrix, we implement the factor hedging procedure of Section 2.3. This procedure is
effectively an approach of extracting partial information about the covariance matrix
of stock returns without fully estimating the entire matrix.

We compute daily rolling covariances of individual stocks returns with the factors
within overlapping backward-looking 3-year windows. We then regress these daily
covariances on the characteristics X t. The residuals from these regressions give us daily
portfolio weights W h,t of the hedging portfolios which we then use to calculate daily
hedging factor returns. This completes the first step in the approach we outlined in
Section 2.3. To implement the second and third steps, we calculate stocks’ covariances
with the hedge portfolio returns so that we can modify stocks’ weights in the factor
portfolios to remove unpriced risks, and then regress the factor portfolio weights on
these covariances to obtain residual factor portfolio weights that have been purged of

21 We also considered setups with up to 100 principal components, with little difference in results.
22 Our rolling covariance matrix approach potentially uses some information not in Xt. As Σt is

defined as an expectation conditional on Xt, this is a slight deviation from our theoretical setup.
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Figure 1: Quantifying inefficiency of OLS factors. The plot shows improvement, in %,
of annualized average in-sample maximum squared Sharpe ratio of hedged OLS factors relative to
unhedged factors, for all models with a constant and 1–15 additional factors. We hedge the factors
up to three times. We also report performance of the GLS factors which use the sample conditional
covariance matrix of individual stock returns estimated using the rolling PCA procedure outlined in
Section 4.2.1. For each number of factors on the x-axis, results are averaged across 10,000 models
with this number of factors randomly drawn from the set of all factors.

unpriced risk exposure. We define characteristics associated with these factors to be
“hedged characteristics.” To construct iterated hedged factors, we repeat this procedure
multiple times.23

Estimation error in the moments involved in the hedging procedure will adversely
affect the performance of the hedged factors. Therefore, as in the case of GLS factors,
the performance of the hedged factors based on estimated moments provides a lower
bound on the improvement that may be possible in theory with known population
moments.

4.3. Empirical performance of hedged factors

Figure 1 quantifies the degree of inefficiency of OLS factors due to their failure to
incorporate information from the covariance matrix of stock returns. We report im-
provement in average in-sample MVE portfolio’s squared Sharpe ratios constructed

23 In addition to this approach we also implement the approach of DMRS that we discussed in
footnote 27 of Appendix C.1. That is, in the second and third steps we purge the ad-hoc factors from
unpriced risks by regressing the daily univariate factors on the daily hedge portfolio returns. The
parameters of this regression are estimated using full sample and then used to construct residuals (as
an alternative, we also implemented and tested estimating the parameters of this regression in rolling
or expanding windows). The residuals are the hedged factors. We refer to this type of hedging as
“DMRS hedging.” The results are reported in Appendix Tables D.4, D.5 and D.6.
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from hedged OLS factors relative to unhedged factors, in %. We run the hedging
procedure for up to three rounds of hedging. We calculate these improvements for
OLS factor models with different numbers of characteristic-based factors from one to
fifteen, in addition to the constant characteristic which is implicitly included in all
models. Since there are different possible subsets of J factors from the full 34 OLS
factors, we draw, for each J , 10,000 random subsets of J factors. Figure 1 shows the
percentage improvement in the maximum squared Sharpe ratio averaged across these
random subsets for each J .

As the figure shows, the benefit of hedging decreases as the number of characteristics
increases. This is what we anticipated in our discussion of Proposition 2. Including a
large number of characteristics makes it more likely that loadings on major sources of
covariances are spanned by the columns of X t. This renders violations of the conditions
of Proposition 2 quantitatively less important. As a consequence, a large number of
OLS factors approximately spans the SDF and factor hedging provides little additional
benefit.

The benefit trends towards zero and might even turn negative when J is large.
Under population moments, as in our earlier theoretical analysis, hedging would never
lead to a deterioration of the Sharpe ratio in sample. However, with estimated mo-
ments, estimation error contaminates the hedging procedure and hedging can then lead
to a deterioration, especially out of sample.

The figure also shows that there can be a benefit from iterating on the hedging
procedure using the iterated hedging approach that we developed in our theoretical
analysis. This benefit is larger if the number of factors is relatively small. For example,
with J = 2..5, hedging a single time leads to an improvement in average maximum
squared Sharpe ratio of about 50%. Hedging one more round raises this number to
about 60%, on average. The marginal benefit of each additional round of hedging is
small. For J ≥ 15 the benefit of the second round of hedging largely dissipates.

The red line in Figure 1 depicts average squared Sharpe ratio improvements gen-
erated by GLS factors based on a conditional covariance matrix of individual stock
returns estimated using the rolling PCA procedure outlined in Section 4.2.1. Recall
that iterative hedging is essentially a way of using information from this (inverse) co-
variance matrix without the need to estimate the entire matrix. As such, we would
expect hedging to perform similarly to GLS. This is exactly what we see in the fig-
ure: GLS factors generate improvements in maximum squared Sharpe ratios of broadly
similar magnitude—slightly higher than hedging for models with one or two factors,
and about the same as hedged factors for models with three or more factors. Overall,
this result suggests that factor hedging performs as intended. It is a useful simpler
alternative to GLS that avoids estimation of the full conditional covariance matrix of
individual stock returns.

Figure 2 demonstrates the effect of these improvements on the total average squared
Sharpe ratio, in levels, for models with unhedged, hedged (up to three times), and GLS
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Figure 2: In-sample maximum squared Sharpe ratio of hedged OLS factors. The plot shows
annualized average in-sample maximum squared Sharpe ratios of unhedged and hedged OLS factors,
as well as GLS factors. We hedge the factors up to three times. The latter use the sample conditional
covariance matrix of individual stock returns estimated using the rolling PCA procedure outlined in
Section 4.2.1. For each number of factors on the x-axis, results are averaged across 10,000 models
with this number of factors randomly drawn from the set of all factors.

factors. Similar to Figure 1, we see that using hedged or GLS factors leads to sizeable
improvements in maximum squared Sharpe ratios. The level of improvement decays
only slightly as J increases in the range 1..15, indicating that although the relative
benefit of hedging decays with J , as we have seen in Figure 1, hedging still leads to
roughly the same level increases in squared Sharpe ratio (of around 2.0) in our dataset
for J ≤ 15. For larger J , the level of improvement continues to decay, however, and
approaches zero when all factors are included (see Table 2 below).

In addition to studying the OLS factors, we also repeat the above analysis for
univariate and orthonormalized factors in Appendix D. We find that average squared
Sharpe ratio improvements of univariate factors decay much more slowly with the
number of factors J , and that there is higher benefit to hedging more than one round.
These results suggest that univariate factors might be more contaminated with unpriced
risks than OLS factors and there is more room for correcting these inefficiencies with
hedging or GLS factor constructions, even for models with a large number of factors.
Results for orthonormalized factors are in between those for OLS and univariate factors.
We summarize all these results in Appendix Table D.1.

We now turn our attention to the edge cases of the Figure 1. First, we look at
models with two factors: the level factor corresponding to the constant vector in X t

and one additional factor based on one characteristic at a time. Second, we look at
models that use all available factors. We can consider each of these models individually
without having to rely on random sampling as we have done previously.

Table 1 shows how hedging changes the in-sample squared Sharpe ratio of various
specific two-factor models. The first column shows the results for unhedged factors,
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Table 1: In-sample maximum squared Sharpe ratios of two-factor OLS models.
We report in-sample maximum annualized squared Sharpe ratios of all models which use OLS
factors (first column), OLS hedged factors for n = 1..3 rounds, as well as approximate GLS
factors (the last column). All models include two characteristics in Xt: a constant, and one
of the characteristics listed in the rows. GLS factors use a non-parametric covariance matrix
estimated via PCA applied to 3-year rolling windows of daily stocks returns. The row labeled
“ER” uses fitted values from a panel regression of returns on all characteristics as a standalone
characteristic. The last row averages the numbers across all models. ∗ indicate p < 0.05 of
a one-sided Barillas et al. (2020) test of the squared Sharpe ratio difference of a given model
relative to the unhedged benchmark (first column). ∗∗ indicate p < 0.01.

OLS Hedged n times GLS

1 2 3

Size 0.36 0.72∗ 0.55 0.59 0.79∗∗
Value (A) 0.76 1.20∗ 1.24∗ 1.22∗ 1.22∗∗
Gross Profitability 0.53 0.98∗∗ 0.92∗ 0.87∗ 1.14∗∗
F-score 0.85 1.67∗∗ 1.87∗∗ 1.87∗∗ 2.22∗∗
Debt Issuance 0.43 0.75∗ 0.75 0.76∗ 1.00∗∗
Share Repurchases 0.71 1.36∗∗ 1.44∗∗ 1.58∗∗ 1.40∗∗
Net Issuance (A) 1.14 1.95∗∗ 2.02∗∗ 2.17∗∗ 1.89∗∗
Asset Growth 0.87 1.24∗ 1.30∗ 1.36∗ 1.50∗∗
Asset Turnover 0.59 0.78 0.61 0.65 0.90∗
Gross Margins 0.41 0.99∗∗ 0.83∗ 0.92∗ 1.24∗∗
Earnings/Price 0.71 1.21∗ 1.08 1.07 1.30∗∗
Investment/Capital 0.61 0.95∗ 0.89 0.92 1.08∗∗
Investment Growth 0.82 1.16∗ 1.22∗ 1.23∗ 1.47∗∗
Sales Growth 0.75 0.96 0.87 0.95 1.08∗
Leverage 0.53 0.75 0.75 0.71 0.86∗
Return on Assets (A) 0.44 0.83∗ 0.70 0.72 1.07∗∗
Return on Book Equity (A) 0.44 0.81∗ 0.63 0.67 1.00∗∗
Sales/Price 0.65 0.87 0.79 0.81 0.92∗
Momentum (6m) 0.35 0.64∗ 0.64∗ 0.63∗ 0.91∗∗
Industry Momentum 1.05 1.63∗ 1.57∗ 1.56∗ 1.99∗∗
Momentum (12m) 0.73 1.12∗ 1.12∗ 1.10∗ 1.57∗∗
Momentum-Reversals 0.45 0.80∗ 0.74 0.71 0.86∗∗
Value (M) 0.60 0.90∗ 0.94∗ 0.95∗ 1.12∗∗
Net Issuance (M) 1.12 1.89∗∗ 1.86∗ 1.90∗ 2.37∗∗
Short-Term Reversals 0.72 1.60∗∗ 1.62∗∗ 1.62∗∗ 2.08∗∗
Idiosyncratic Volatility 0.76 1.15 0.96 0.91 1.50∗∗
Beta Arbitrage 1.10 0.80 0.86 0.90 1.30
Industry Rel. Reversals 1.47 2.56∗∗ 2.58∗∗ 2.62∗∗ 3.31∗∗
Price 0.37 0.66∗ 0.68∗ 0.66∗ 0.85∗∗
Firm’s age 0.56 1.13∗∗ 1.00∗ 0.97∗ 1.13∗∗
Share Volume 0.81 0.81 0.75 0.74 1.23∗∗
Exchange Switch 0.82 1.38∗∗ 1.32∗∗ 1.31∗ 1.39∗∗
IPO 0.44 0.88∗ 0.75 0.74 0.89∗∗

ER 7.18 9.24∗ 9.76∗∗ 9.87∗∗ 11.49∗∗

Average 0.89 1.36 1.34 1.36 1.65
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the next three columns hedge factors iteratively up to three times, and the last column
employs GLS hedging. In each row of the table, the characteristics matrix X t includes
a constant and the characteristic listed in this row. For all of these, since only one
characteristics is used, it is highly unlikely that the conditions hold that are required
by Proposition 2 for OLS factors to span the SDF. Hedging the factors should therefore
improve the Sharpe ratio. Consistent with this logic, we find improvements from
hedging for every characteristic, and the gain is often substantial.

To interpret this correctly, it is important to keep in mind that the failure of the
unhedged factors to span the SDF is not a simple consequence of the fact that two-factor
models omit other characteristics that are informative about expected returns but are
left out from the two-factor model. The hedged factors do not use any information
from these other characteristics either. Instead, the reason for the inferiority of the
unhedged factors is that a single characteristic is not enough to satisfy the conditions
in Proposition 2 for OLS factors to span the SDF that prices assets conditional on this
single characteristic. Put simply, the unhedged factors are not mean-variance efficient
because they ignore information in the covariance matrix of stock returns. Hedging
the factors corrects this inefficiency and improves the Sharpe ratio.

To see this more clearly, we report squared Sharpe ratios based on approximate
GLS factors in the last column of the table. We use a non-parametric covariance
matrix estimated via PCA applied to 3-year rolling windows of daily stocks returns to
estimate GLS factors. While we expect this estimate to be noisy, it provides a lower
bound on the improvement in the maximum squared Sharpe ratio that can be achieved
by using our approximate GLS factors. The table shows that hedging OLS factors
moves their squared Sharpe ratios in the direction of the approximate GLS factors.
GLS factors achieve even higher in-sample squared Sharpe ratios than hedged factors
do, suggesting that our procedure of estimating the covariance matrix is able to extract
useful economic infromation despite its highly noisy nature.

As the table shows, there is considerable heterogeneity in how much hedging or
GLS adjustments improve the Sharpe ratio. Characteristics like short-term reversals,
net issuance, gross margins show dramatic improvements of more than 100% with three
rounds of hedging, and even more so when GLS factors are considered, while others
show little in-sample improvement. The bottom row shows that on average, across all
portfolios, maximum squared Sharpe ratios increase from 0.89 (unhedged factors) to
1.36 (after three rounds of hedging), to 1.65 for GLS factors. These improvements in
squared Sharpe ratios are statistically significant. To demonstrate this we conduct a
one-sided 5% or 1% test based on Barillas et al. (2020) which compares the squared
Sharpe ratio of the model in question to the benchmark OLS model with no hedg-
ing (the first column). We use ∗ and ∗∗ to indicate significance at these two levels,
respectively.

Lastly, we construct a composite characteristic which uses fitted values from a panel
regression of returns on all characteristics (row labeled “ER”). This characteristic sum-
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marizes expected return predictability of all original characteristics, but uses a single
factor and thus generally does not satisfy the conditions in Proposition 2 for OLS
factors to span the SDF that prices assets conditional on this single composite charac-
teristic. As such, it is a natural candidate for hedging or GLS factor construction. The
table shows that benefits of hedging for this characteristics are substantial. Hedging
three rounds achieves a squared Sharpe ratio of 9.87 (from 7.18), while GLS construc-
tions rise this number as high as 11.49.24 These results indicate that the conditions in
Proposition 2 are indeed likely to be violated. In other words, sorting stocks on fitted
expected returns preserves information in means but largely discards information in
covariances, which prevents the factor from reaching mean-variance efficiency.

Appendix Table D.3 shows the out-of-sample results. Overall, they are consistent
with in-sample results. Hedging once increases the squared Sharpe ratios marginally,
from 0.47 to 0.57 on average across all models with no out-of-sample benefit to hedging
more rounds. GLS factors achieve the squared Sharpe of 0.89. Hedging the “ER”
characteristic also improves squared Sharpe out of sample, to 1.71 (from 1.37) after
three rounds of hedging, and as high as 2.65 when using GLS factors. Table D.2 reports
the out-of-sample results for univariate factors and factors based on orthonormalized
characteristics. Out-of-sample results exhibit similar patterns as the in-sample results,
but the magnitude of effects is diminished.

In Table 2, we consider the effect of hedging on the models with the full set of 34
factors, both in sample (top panel) and out of sample (bottom panel). The first column
shows the maximum squared Sharpe ratios of the original unhedged models, while the
following five columns hedge the factors up to five times. We use ∗ and ∗∗ to indicate
significance of the squared Sharpe ratio difference at the 5% and 1% level, respectively,
using the one-sided test of Barillas et al. (2020).

The results in the table are consistent with our previous findings and intuition.
First, hedging raises the squared Sharpe ratio for univariate factors (13.9 to 17.2 in
sample and 1.3 to 2.4 out of sample). For orthonormal and OLS factors the increases
are small, consistent with our previous findings that the benefits of hedging decay as
the number of factors increases.

To summarize, the results in this section demonstrate sizeable benefits of hedging
and GLS factor constructions in terms of squared Sharpe ratio improvements. Hedg-
ing is especially beneficial for univariate factors. This evidence suggests that standard
univariate or OLS factors leave a lot of mean-variance efficiency on the table because
they ignore information in the covariance matrix of stock returns. Hedging is a simple
and effective way to correct this inefficiency. The benefits of hedging for OLS fac-

24 These GLS constructions can be interpreted as direct estimates of an MVE portfolio constructed
from individual stock returns in (4), where stock-level expected returns µt are estimated via a panel
regression of returns on all characteristics, and the stock-level covariance matrix of returns Σt is
estimated using the non-parametric PCA-based approach discussed above.
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Table 2: Maximum squared Sharpe ratios of hedged factors.
We report in-sample (top panel) and out-of-sample (bottom panel) annualized maximum
squared Sharpe ratio of the MVE portfolio constructed from 34 unhedged (first column) or
hedged up to five times factors. Rows correspond to three types of factors we discuss in Section
4.2. ∗ indicate p < 0.05 of a one-sided Barillas et al. (2020) test of the squared Sharpe ratio
difference of a given model relative to the unhedged benchmark (first column). ∗∗ indicate
p < 0.01.

Unhedged Hedged n times

1 2 3 4 5

In-sample

Univariate 13.9 16.4∗ 17.1∗∗ 17.2∗∗ 17.2∗∗ 17.2∗∗
SVD 18.1 20.3∗ 20.3∗ 20.4∗ 20.4∗ 20.4∗
OLS 21.2 21.7 21.3 21.3 21.3 21.3

Out-of-sample

Univariate 1.3 1.5 2.1 2.2 2.4 2.4
SVD 3.6 3.2 3.5 3.6 3.6 3.6
OLS 4.1 3.8 3.8 3.9 3.9 4.0

tors diminish quickly as the number of factors increases because the large number of
characteristics renders violations of the conditions of Proposition 2 quantitatively less
important. As a consequence, when the number of OLS factors is large, they approxi-
mately span the SDF and factor hedging provides little additional benefit. In the same
spirit, hedging GLS factors does not lead to any increase in the squared Sharpe ratio
since these factors are already approximately mean-variance efficient.

4.4. Dimensionality reduction

Our final empirical analysis looks at dimensionality reduction. The goal of dimension-
ality reduction methods is to find a small number of factors that capture the most
important information in the original set of characteristic-based factors while retaining
information from all original characteristics. This is particularly helpful in cases when
a characteristic-sparse SDF might not be easily available, similar to Kozak et al. (2020).
In Section 3, we showed the conditions necessary for dimensionality reduction to be
possible. We also showed a few ways how to proceed with dimensionality reduction
and how these approaches are related. In this section we explore and compare these
methods empirically.

In particular, in the discussion of Example 5 we showed that the factors f IPCA,t+1
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in (33) satisfy a conditional version of the first-order conditions in Kelly et al. (2019)
that define the IPCA estimator. This means that a conditional equivalent of an IPCA
estimator can be constructed using PCA on managed portfolios, even in the case where
characteristics are not orthonormalized, if the managed portfolios are constructed as
OLS factors. PCA on OLS factors then recovers Qt. By applying this matrix to
univariate portfolios X ′

tzt+1 and further transforming them by (Q′
tX

′
tX tQt)

−1 as in
(33) yields our version of the IPCA estimator.

The assumption of time-constant Qt and Λt can justify working with a constant
Q extracted from an average conditional covariance matrix.25 Moreover, under the
assumption U ′

tX t = 0 in Example 5 that the IPCA estimator is based on, OLS factor
returns have constant conditional expected return ϕ, and hence the unconditional
covariance matrix is equal to the average conditional covariance matrix. This is the
basis for our empirical implementation where we apply PCA to the unconditional
covariance matrix. The underlying assumption that Qt and Λt are time-constant is
a relatively mild one, because, as we discussed in 4.1, the relevant time-variation in
conditional moments is only conditional on X t, not other time-varying predictors,
and we work with rank-standardized characteristics where most of the information in
characteristics that could be connected to time-varying moments has been removed.

Similarly, Example 6 showed that under Assumption (29) we should apply PCA to
univariate portfolios constructed using orthonormalized characteristics to obtain PPCA
factors from Kim et al. (2021).

As benchmarks for comparison, we also apply PCA to univariate portfolios as mo-
tivated by Kozak et al. (2018) and Kozak et al. (2020) (we denote this specifications a
“SCS”). Lastly, we include a GLS analogue of IPCA, labeled as “IPCA (GLS)”, that con-
structs the factors as f t+1 =

(
Q′

tX
′
tΣ

−1
t X tQt

)−1
Q′

tX
′
tΣ

−1
t zt+1, where Qt are eigen-

vectors from PCA of the GLS factors. For all approaches, we apply PCA to monthly
returns.

We now compare empirical performance of these methods of dimensionality reduc-
tion in terms of unconditional mean-variance efficiency. Table 3 reports in-sample and
out-of-sample maximum annualized squared Sharpe ratios of these extracted latent
factors for each of the four portfolio-formation approaches. We report our results by
varying the number of latent factors from 1 to 12 (shown in columns). To compute out-
of-sample metrics we split the sample in 2005, estimate mean-variance optimal factor
combination in the earlier part of the sample using daily returns, and compute squared
Sharpe ratios in the latter part using these pre-2005 weights and monthly returns.

The table shows that our analytical versions of IPCA factors from Example 5 and

25 In practice, however, the theoretic equivalence between our analytic IPCA approach and the
iterative procedure of Kelly et al. (2019) might not hold exactly if this time-constancy assumption is
violated, or if the assumptions in Corollary 2 about the covariance matrix do not hold and hence the
dimension-reduction to K factors approach is misspecified.
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Table 3: Dimensionality reduction: Comparing different portfolio-formation approaches
The table reports in-sample (top panel) and out-of-sample (bottom panel) maximum annual-
ized squared Sharpe ratios of N PCs (columns) of factors from one of four portfolio-formation
approaches (rows): (i) univariate from Kozak et al. (2018) and Kozak et al. (2020) (SCS),
(ii) IPCA from Kelly et al. (2019) implemented as in Example 5, (iii) PPCA from Kim et al.
(2021) implemented as in Example 6, and (iv) GLS analogue of IPCA factors as explained in
the text. Out-of-sample results are based on a split sample estimation before/after 2005.

1 2 3 4 5 6 7 8 9 10 11 12

In-sample

SCS 0.1 0.6 0.9 1.2 3.1 3.1 3.1 4.4 4.7 4.7 8.3 8.4
IPCA 0.3 3.6 4.1 4.6 6.9 7.9 12.3 12.8 14.0 14.7 15.0 15.4
PPCA 0.3 0.3 0.7 2.5 8.4 8.4 8.9 12.2 12.3 13.4 13.4 13.5
IPCA (GLS) 0.6 1.7 11.4 11.1 11.9 13.1 16.4 17.0 16.9 16.5 16.5 16.6

Out-of-sample

SCS 0.1 0.2 0.4 0.5 0.4 0.3 0.2 0.6 0.8 0.8 1.6 1.5
IPCA 0.3 0.6 0.7 0.9 1.0 1.2 2.2 2.3 2.7 3.2 3.5 3.8
PPCA 0.2 0.2 0.4 1.0 1.7 1.4 1.3 3.2 2.5 3.3 3.1 3.1
IPCA (GLS) 0.4 0.3 2.9 2.3 2.8 2.9 4.7 5.0 3.9 3.8 3.8 3.8

PPCA factors from Example 6 perform better than PCA on simple univariate factors
(SCS). The primary reason for this improvement is the additional linear transformation
step in the IPCA procedure. This result is similar to our previous finding that OLS
factors perform better than univariate factors in terms of being less contaminated by
non-priced risks. Performing an OLS transformation on PCA-implied “characteristics”
delivers the same benefit.

Equation (35) shows that PPCA can be thought as a simple PCA on univariate
portfolios as in the SCS approach, but applied to orthonormalized characteristics. That
is, PPCA uses only information from orthonormalized characteristics and disregards
the information from the original characteristics. As discussed in Section 4.1 normal-
ization of characteristics removes time-series variation in their cross-sectional variances
and correlations, but can be advantageous for conditioning down the models. The
maximum squared Sharpe ratio attainable conditional on orthonormalized character-
istics might therefore be lower than that of the original characteristics. Table 3 shows
that Sharpe ratio deterioration is small in the data: squared Sharpe ratios attainable
from orthonormalized characteristics (PPCA) are roughly the same as the ones from
the IPCA method but significantly higher than the ones attainable from SCS factors.

Note that if we work with cross-sectionally orthonormalized characteristics directly,
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all methods discussed above become equivalent. This is because in this case X ′
tX t = I

so any OLS transformations drop out. That is, other methods, such as IPCA, become
equivalent to PPCA if we restrict their information set to orthonormalized charac-
teristics. Without this restriction, these other methods, in principle, use a broader
information set and could outperform PPCA. However, in practice, we find that the
difference in performance is small.

The last row in each panel focuses on the GLS analogue of IPCA factors. We
see that these factor models achieve squared Sharpe ratio improvements with fewer
factors than their counterparts that ignore information in the covariance matrix of
stock returns. The GLS version of IPCA achieves the highest squared Sharpe ratios
and only needs 7-8 factors to get there.

The fact that the GLS version of IPCA performs better than IPCA when the
number of latent factors is low suggests that latent factor models with a small number
of factors can potentially benefit from hedging. We investigate this conjecture in Table
D.7 in the Appendix. We find that hedging can indeed improve the performance of
latent factor models, especially the ones that are not OLS transformed, such as the
SCS model. Table D.8 in the Appendix shows that the same is true in out-of-sample
data.

In summary, we find that latent factor models perform quite differently depending
on how their factors are constructed. In general, OLS-transformed characteristics lead
to more efficient factors with less contamination from unpriced risks, both for simple
and latent factors. If we restrict the information set to include only orthonormalized
characteristics, which is what PPCA does, all methods become equivalent under this
information set and perform on par with the OLS-transformed factors. We see some
benefits of hedging or GLS adjustments for latent factors, especially the ones that are
not OLS-transformed.

5. Conclusion
Heuristic factor construction by sorting on firm characteristics, weighting by charac-
teristics, or computing OLS cross-sectional regression slopes does not use information
about the covariance matrix of individual stock returns. As a consequence, these
heuristic factors span the SDF that prices individual stocks only if the covariance ma-
trix satisfies certain special conditions. We work out what these conditions are and
obtain a number of insights.

First, horse races between direct prediction of excess returns with characteristics
and heuristic characteristics-based factor models, or between different heuristic factor
models, have no economic content other than exposing the shortcomings of heuristic
factor construction that neglects covariance matrix information. Results from such
horse races do not lead to insights about competing economic theories of risk premia
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and mispricing.
Second, when the individual stock return covariance matrix satisfies conditions

such that OLS cross-sectional regression slope factors span the SDF, then nonsingular
transformations of OLS factors span the SDF, too, including univariate factors in which
stocks in each factor are weighted by a single characteristic. Choice among these dif-
ferent transformations is then a matter of convenience, for example, to obtain suitable
conditioning-down properties. Empirically, these conditions do not hold exactly, and
OLS factors seem to generally get closer to spanning the SDF.

Third, the conditions on the covariance matrix that allow OLS factors, or transfor-
mations thereof, to span the SDF are more likely to hold when the number of charac-
teristics employed by the econometrician is larger. Additional characteristics can help
even if they are unrelated to expected returns as long as they help to capture important
sources of stock return covariances. We find empirical support for this prediction.

Fourth, heuristic factor models that employ only a small number of characteris-
tics can benefit from purging unpriced risks using hedging methods. Compared with
unhedged factors, hedged factors can span the SDF under weaker conditions on the
covariance matrix of individual stock returns. Hedging unpriced risks effectively in-
corporates some information about the covariance matrix into factor construction, but
without requiring inversion of a large covariance matrix. Consistent with our theoreti-
cal results, we find that hedging benefits are largest for small-scale factor models while
OLS factor models with a large number of factors are already close to spanning the
SDF.

Fifth, iterating on these hedging procedures allows further relaxation of the con-
ditions on the covariance matrix. Empirically, we find modest benefits from iterated
hedging for small-scale factor models, but the benefits from iteration are small for
models with a large number of factors.

Sixth, when the relationship of expected returns and covariance matrix to charac-
teristics has a lower-dimensional structure such that information in J characteristics
can be captured by K < J characteristics, then the SDF can be spanned by K factors
without requiring inversion of a large covariance matrix. Under the conditions on the
covariance matrix that allow the factors to span the SDF, simple PCA on OLS factors
is equivalent the IPCA method of Kelly et al. (2019), and simple PCA on univariate
factors constructed from orthonormalized characteristics is equivalent to the PPCA
method of Kim et al. (2021).

Overall, our results provide the conceptual foundations for the construction, hedg-
ing, and dimension-reduction of reduced-form characteristics-based factors that was
missing so far in the vast empirical literature on factor models in cross-sectional asset
pricing.
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Appendix A. Proofs

Appendix A.1. Proof of Lemma 1

Following the proof of Lu and Schmidt (2012) Theorem 3 (A, B), express the difference
of the left- and right-hand-sides of (7) as ∆ = µ′

tΣ
− 1

2
t MΣ

− 1
2

t µt, where M = I−P and
P are residual and projection matrices, respectively, for a projection onto the columns
of Σ

1
2
t W t. ∆ = 0 if and only if Σ

− 1
2

t µt is in the column space of Σ
1
2
t W t, that is,

Σ
− 1

2
t µt = Σ

1
2
t W tbt for some bt, which is equivalent to (8).

Appendix A.2. Proof of Proposition 1

Rewrite (11) as µt = ΣtΣ
−1
t X tStS

−1
t ϕ = ΣtW tbt, where W t = Σ−1

t X tSt. Lemma 1
now applies.

Appendix A.3. Proof of Proposition 2

Lu and Schmidt (2012) Theorem 1 (B, F’) implies that (18) is equivalent to the
statement that there exists a nonsingular Bt such that ΣtX t = X tBt. Rewrit-
ing Assumption 1 as µt = X tBtB

−1
t ϕ, we see that it is then equivalent to µt =

ΣtX tStS
−1
t B−1

t ϕ = ΣtW tbt, where bt = S−1
t B−1

t ϕ. Thus, condition (8) in Lemma
1 is satisfied, which means that Lemma 1 applies. This proves sufficiency. To prove
necessity, denote At = ΣtX tSt. Then condition (8) in Lemma 1 reads µt = Atbt, and
bt = A−

t µt + [I −A−
t At]e, for an arbitrary vector e, describes all the solutions bt for

which the condition holds, where A−
t is any generalized inverse of At, including the

pseudo-inverse A+
t = (S′

tX
′
tΣ

2
tX tSt)

−1S′
tX

′
tΣt. Proceeding with the pseudo-inverse,

and plugging these solutions back into condition (8) and imposing Assumption 1, we
obtain X tϕ = AtA

+
t X tϕ. For this equation to hold for all vectors ϕ, it must be true

that AtA
+
t X t = X t, which we can write as ΣtX tB

−1
t = X t, and so it is necessary

that ΣtX t = X tBt holds, which is equivalent to statement (B) in Lu and Schmidt
(2012) Theorem 1, and hence, by Lu and Schmidt (2012) Theorem 1 (B, F’), equivalent
to our condition (18) in Proposition 2.

Appendix A.4. Proof of Lemma 2

Lu and Schmidt (2012) Theorem 3 (B, F’) implies that (C.2) is equivalent to the
statement that there exists some Bt such that X t = ΣtH tBt. Rewriting Assumption
1 as µt = ΣtH tBtϕ = ΣtW tbt, where bt = Btϕ. Thus, condition (8) is satisfied,
which means that Lemma 1 applies.
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Appendix A.5. Proof of Proposition 3

In (C.5), write V̂ t = Y tAt where At = ΓtY
′
tRtY tΓtY

′
tX tSt. By assumption, RtY t

has full column rank J , hence Y ′
tRtY t = Y ′

tRtRtY t has full rank. Since pre- and
post-multiplying this expression by full rank matrices Γt and Y ′

tX tSt does not change
rank, it follows that At is full rank and hence nonsingular. Then, substituting V̂ t =
Y tAt, with At nonsingular into (C.8) yields Ĥ t = X tSt−Y t(Y

′
tY t)

−1Y ′
tX tSt. Then

U ′
tĤ t = 0 immediately follows. Therefore, by Lemma 2, the result follows.

Appendix A.6. Proof of Proposition 4

We first show that V̂ t and V̂ 2,t jointly span the same column space as Y t. Note
that we can write (V̂ t : V̂ 2,t) = Y tGtAt with At = (Y ′

tX tSt : Y
′
tĤ t) where Gt =

ΓtY
′
tRtY tΓt is a full-rank 2J × 2J square matrix (RtY t has full column rank, so

RtY tΓt has rank 2J . Premultiplying RtY tΓt with its own transpose then results in a
matrix that is also of rank 2J). Since At and Gt are full rank and hence invertible, we
have Y t = (V̂ t : V̂ 2,t)A

−1
t G−1

t , i.e., V̂ t and V̂ 2,t jointly span the same column space
as Y t. Hence, the residuals in a regression of X tSt on (V̂ t : V̂ 2,t), or equivalently, by
the Frisch-Waugh-Lovell theorem, the residuals Ĥ2,t in the regression of M tX tSt on
M tV̂ 2,t in (C.10), are the same as those in a regression of X tSt on Y t. Therefore,
Ĥ ′

2,tU t = 0 holds and by Lemma 2, the result follows.

Appendix B. Alternative assumptions about expected
returns

In a framework in which characteristics predict returns because of mispricing, our base-
line Assumption 1 can be reasonable if the characteristics in X t are directly related
to the magnitude of mispricing without involving cross-asset information. As an ex-
ample, consider scaled price ratios like the book-to-market ratio. If the numerator
(book value) controls for differences across stocks in their fundamental scale and the
remaining price variation that comes in through the denominator (market value), each
stock’s book-to-market ratio may be a good measure of this stock’s mispricing and
hence expected returns.

However, an alternative view may be that characteristics in X t capture not the
magnitude of mispricing directly but rather sentiment-driven investors’ demand for
certain types of stocks. If these sentiment investors trade against mean-variance ar-
bitrageurs, the portfolio optimization of the arbitrageurs induces cross-dependencies
across expected returns and covariances that can result in equilibrium expected re-
turns that differ from Assumption 1 (for this given X t). To illustrate, consider a
CARA-normal model as in Kozak et al. (2018) where a measure (1− θ) of rational ar-
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bitrageurs have demand 1
a
Σ−1

t µt and a measure θ of sentiment investors have demand
in excess of rational investor demand of X td for some vector d, i.e., 1

a
Σ−1

t µt +X td.
With total asset supply of one for each asset, collected in vector ι, market clearing
implies

µt = aΣt(ι− θX td) = ΣtX tϕ, (B.1)

for some vector ϕ, where the last equality follows because X t includes a column of
ones. Thus, in this case instead of Assumption 1, we would have

Assumption 2.

µt = ΣtX tϕ (B.2)

with some J × 1 vector ϕ.

A closely related assumption appears in Brandt et al. (2009). They assume that
mean-variance efficient portfolio weights are linear in characteristics and market port-
folio weights, while here Assumption 2 implies that the weights Σ−1

t µt = X tϕ are
linear in characteristics. Similarly, Kozak et al. (2020) assume that SDF prices of risk
are linear in X t.

The SDF in this case is spanned by GLS factors from GLS cross-sectional regression
of zt+1 on ΣtX t, or transformations of these factors. We can obtain these factors by
replacing X t in Proposition 1 with ΣtX t everywhere. We get factors

f t+1 = S′
tX

′
tzt+1, (B.3)

i.e., the GLS factors simplify to univariate factors or transformations thereof (e.g., OLS
factors with St = (X ′

tX t)
−1). In other words, one can construct factors that span the

SDF solely based on the information in characteristics. No information about Σt is
required to construct these factors.

Our empirical tests in Section 4 therefore have an alternative interpretation as a
test of Assumption 2, rather than as a test of the conditions on the covariance matrix
in Proposition 1 jointly with 1. If Assumption 2 holds, or if the conditions on the
covariance matrix in Proposition 1 hold jointly with Assumption 1, hedging factors
f t+1 = S′

tX
′
tzt+1, or replacing them with GLS factors constructed using Σt, should

not lead to an improvement in the maximum squared Sharpe ratio.
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Appendix C. Hedging of unpriced risks

Appendix C.1. Detailed steps in hedging procedure with multi-
ple characteristics

We first show a result that will be helpful for checking whether a candidate hedged
factor model with factor portfolio weight matrix H t spans the SDF.

Lemma 2. Suppose Assumption 1 holds and that H t is some matrix such that H ′
tX t

has full column rank and H ′
tΣtH t is positive definite. Then the maximum squared con-

ditional Sharpe ratio of the factors f t+1 = H ′
tzt+1 is equal to the maximum conditional

squared Sharpe Ratio of the individual assets if and only if there exist a nonsingular

matrix Ψt, and some matrices Ωt and U t for which

U ′
tH t = 0, (C.1)

such that

Σt = X tΨtX
′
t +U tΩtU

′
t. (C.2)

Proof. See Appendix A.4.
There are two key points to note. First, the requirement that H ′

tX t has full column
rank ensures that no information about expected returns is lost when individual assets
are aggregated with H t as portfolio weight matrix. Second, the requirement that
U ′

tH t = 0 ensures that the factors do not load on unpriced risk. When both conditions
hold, then

ΣtH t = X tΨtX
′
tH t +U tΩtU

′
tH t = X tΨtX

′
tH t, (C.3)

which means that the individual assets’ covariances with these factors are perfectly
linear in X t and so they span µt.

While Lemma 2 allows us to check whether candidate factors span the SDF, it
does not show how to construct factors that satisfy these requirements. As we show,
the factor hedging method of Daniel et al. (2020) (DMRS) is a feasible version of the
approach above.

The first step is to construct hedging factors that go long in stocks with high
loadings on the heuristic factors and short in stocks with low loadings, while hold-
ing constant the characteristics-exposure of the long and short legs of hedging factors,
which ensures that they have zero expected return according to Assumption 1. DMRS
do this by sorting stocks by loadings on heuristic factors within characteristics-sorted
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portfolios. Here, we work with more general characteristics-based factors with weights
W t = X tSt and we construct a hedging portfolio that has precisely zero expected re-
turn by regressing conditional covariances of individual stocks with factors, i.e., ΣtW t,
on X t, and then using the residuals,

W h,t = RtΣtX tSt (C.4)

as portfolio weights for hedge portfolios.
The second step is to calculate stocks’ covariances with the hedge portfolio returns

so that we can modify stocks’ weights in the factor portfolios to remove unpriced risks.
Given the structure of the covariance matrix in (28) in Proposition (3), we get

V̂ t = ΣtW h,t = Y tΓtY
′
tRtY tΓtY

′
tX tSt. (C.5)

The third step is to regress the factor portfolio weights W t = X tSt on V̂ t to obtain
residual factor portfolio weights that have been purged of unpriced risk exposure:26

Ĥ t = X tSt − V̂ t(V̂
′
tV̂ t)

−1V̂ ′
tX tSt. (C.8)

Appendix C.2. Iterated hedging

When Y t has more than J columns, then the feasible hedged factor weights Ĥ t we
construct in (C.8) no longer have the property U ′

tĤ t = 0 that is required in Lemma
2 for the hedged factors to be conditionally mean-variance efficient. The reason is
that if we again construct V̂ t as in (C.5), the J columns of V̂ t now contain J linear
combinations of the 2J columns in Y t. Projection of X tSt on V̂ t therefore no longer
produces the same residuals as a projection on Y t. As a consequence, U ′

tĤ t = 0 is
not ensured in this case.

Consider now repeating the hedging procedure by regressing individual stocks’ con-
ditional covariances with hedged factors, i.e., ΣtĤ t, on X t and collecting the residuals

26 DMRS use a slightly different approach, but under the assumptions of Proposition 3 below, it
yields the same hedged factors. They purge the heuristic factors from unpriced risks that do not earn
expected return by regressing the J heuristic factors on the J hedge portfolio returns and using the
J time series of residuals as the hedged factors. The J × J matrix of regression coefficients in these
regressions is

Kt = S′
tX

′
tΣtW h,t(W

′
h,tΣtW h,t)

−1, (C.6)

and so the hedged factors have weights

Ĥt = XtSt −W h,tK
′
t. (C.7)

Using the definition V̂ t = ΣtW h,t and substituting W h,t = Σ−1
t V̂ t into this expression and Kt, we

obtain (C.5).
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RtΣtĤ t analogous to (C.4), but here for hedged factors. Using these residuals as port-
folio weights, and calculating the covariances of individual stocks with these portfolio
returns, we get, in analogy to (C.5),

V̂ 2,t = Y tΓtY
′
tRtY tΓtY

′
tĤ t, (C.9)

where the only difference to (C.5) is that X tSt was replaced by Ĥ t. Note that V̂ 2,t is
comprised of J linear combinations of the 2J columns of Y t.

Under conditions that we state more formally shortly, V̂ t and V̂ 2,t jointly span the
same column space as Y t. Therefore, the residuals from the regression of X tSt on
Y t are the same as those from a regression of X tSt on V̂ t and V̂ 2,t jointly. And the
latter regression can in turn be implemented in two steps, which results in an iterated
hedging procedure. By the Frisch-Waugh-Lovell theorem, the residuals of a regression
of X tSt on V̂ t and V̂ 2,t jointly are the same as the residuals of a regression of the first
step residuals Ĥ t from regressing X tSt on V̂ t in (C.8) on the residuals from regressing
V̂ 2,t on V̂ t. Therefore, we can construct the hedged portfolio weights as

Ĥ2,t = M tX tSt −M tV̂ 2,t(V̂
′
2,tM tV̂ 2,t)

−1V̂ ′
2,tM tX tSt

= Ĥ t −M tV̂ 2,t(V̂
′
2,tM tV̂ 2,t)

−1V̂ ′
2,tM tĤ t, (C.10)

where M t = I − V̂ t(V̂
′
tV̂ t)

−1V̂ ′
t is the residual maker matrix from regression on V̂ t,

and we obtain Ĥ2,t for which Ĥ ′
2,tU t = 0 holds.

The following proposition states this result formally. It looks similar to Proposition
3, but note that Y t now has 2J columns.

Proposition 4. If the matrices U t and Ωt in (C.2) are such that there exists a de-

composition

U tΩtU
′
t = Y tΓtY

′
t +EtΦtE

′
t, (C.11)

where Y t is an N × 2J matrix of full column rank, RtY t has full column rank,

(Y ′
tX tSt : Y

′
tĤ t) has full rank, with Ĥ t defined as in (C.8), E′

tX t = 0, E′
tY t = 0

and Γt is nonsingular, then the maximum squared conditional Sharpe ratio of the hedged

factors f t+1 = Ĥ ′
2,tzt+1 with Ĥ2,t as defined in (C.10) is equal to the maximum squared

Sharpe Ratio of the individual assets.

Proof. See Appendix A.6.
In analogy to the case with a single round of hedging that we discussed following

Proposition 3, the rank requirements for several matrices in Proposition 4 have an
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economic interpretation. The requirements that (Y ′
tX tSt : Y

′
tĤ t) has full rank and

RtY t has full column rank are both needed to ensure that iterated hedging factor
portfolio weight vectors Ĥ2,t are linearly independent. One could again relax these rank
requirements by building dimension-reduction steps that removes linear dependencies
in the iterated hedging procedure.

What do we gain from iterated hedging? Comparing the conditions in Proposition
4 with those in Proposition 3, we can see that those in Proposition 4 are weaker. While
the conditions in Proposition 3 allow for J linearly independent sources of such non-
orthogonality of X t and the columns of U t, the conditions in Proposition 4 allow for
2J linearly independent sources of such non-orthogonality. In other words, iterated
hedging can remove more sources of unpriced risk contamination in characteristics-
based factors than a single round of hedging can.

Appendix D. Additional plots and figures

Appendix D.1. Empirical performance of hedged factors

In Figure D.1 we perform the exercise from Figure 1 using univariate factors. Interest-
ing differences emerge from comparing results for OLS and univariate factors. First,
average squared Sharpe ratio improvements decay much more slowly with the number
of factors J . Second, there is higher benefit to hedging more than one round and even
higher if GLS factors are used. These results suggests that univariate factors might
be more contaminated with unpriced risks than OLS factors and there is more room
for correcting these inefficiencies with hedging or GLS factor constructions, even for
models with a large number of factors.

Figure D.2 studies orthonormalized factors. The results lie in between of OLS and
univariate factors: the speed of the squared Sharpe ratio improvement decay with the
number of factors J is greater than in the univariate case but lower than with OLS
factors; hedging more than once provides greater benefit than for OLS factors but less
than with univariate factors.

Figures D.3 and D.4 show the same results evaluated out-of-sample using the sample
split approach discussed previously. Out-of-sample results exhibit similar patterns as
the in-sample results, but the magnitude of effects is diminished.

Table D.1 reports the level of in-sample maximum squared Sharpe ratios for hedged
and GLS factors. We show results for univariate, orthonormal, and OLS factors. Table
D.2 shows the same results evaluated out-of-sample using the sample split approach
discussed previously. Out-of-sample results exhibit similar patterns as the in-sample
results, but the magnitude of effects is diminished. For OLS factors hedging provides
small improvement for models with a small number of factors and no improvement for
models with 12 or more factors. GLS factors (last row) work somewhat better than
hedged factors and still yields some efficiency improvements even for models with 15
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Figure D.1: In-sample maximum squared Sharpe ratio improvement due to iterative hedg-
ing of univariate factors. The plot shows improvement, in %, of annualized average in-sample
maximum squared Sharpe ratio from hedged univariate factors relative to unhedged factors, for all
models with a constant and 1–15 additional factors. We hedge the factors up to three times. We
also report performance of the GLS factors which use the sample conditional covariance matrix of
individual stock returns estimated using the rolling PCA procedure outlined in Section 4.2.1. For
each number of factors on the x-axis, results are averaged across 10,000 models with this number of
factors randomly drawn from the set of all factors.

factors. For univariate and orthonormal factors, the improvements in squared Sharpe
ratios decay slower with the number of factors. We can still see benefits for OOS
performance even for models with 15 factors.

Table D.3 reports maximum out-of-sample annualized squared Sharpe ratios of all
two-factor models which use OLS factors (first column), OLS hedged factors for n = 1..3
rounds, as well as approximate GLS factors (the last column). All models include two
characteristics in X t: a constant, and one of the characteristics listed in the rows.

We consider DMRS hedging as an alternative to our hedging approach. Tables
D.4 and D.5 show in-sample and out-of-sample results, respectively. Overall, DMRS
hedging appears to be less reliable and performs significantly worse than our hedging
approach.
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Figure D.2: In-sample maximum squared Sharpe ratio improvement due to iterative hedg-
ing of orthonormalized factors. The plot shows improvement, in %, of annualized average in-
sample maximum squared Sharpe ratio from hedged orthonormalized factors relative to unhedged
factors, for all models with a constant and 1–15 additional factors. We hedge the factors up to three
times. We also report performance of the GLS factors which use the sample conditional covariance
matrix of individual stock returns estimated using the rolling PCA procedure outlined in Section 4.2.1.
For each number of factors on the x-axis, results are averaged across 10,000 models with this number
of factors randomly drawn from the set of all available factors.
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Figure D.3: Out-of-sample maximum squared Sharpe ratio improvement due to iterative
hedging of OLS factors. The plot shows improvement, in %, of annualized average out-of-sample
maximum squared Sharpe ratio from hedged OLS factors relative to unhedged factors, for all models
with a constant and 1–15 additional factors. We hedge the factors up to three times. We also report
performance of the GLS factors which use the sample conditional covariance matrix of individual
stock returns estimated using the rolling PCA procedure outlined in Section 4.2.1. For each number
of factors on the x-axis, results are averaged across 10,000 models with this number of factors randomly
drawn from the set of all factors.
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Figure D.4: Out-of-sample maximum squared Sharpe ratio improvement due to iterative
hedging of Univariate factors. The plot shows improvement, in %, of annualized average out-of-
sample maximum squared Sharpe ratio from hedged univariate factors relative to unhedged factors,
for all models with a constant and 1–15 additional factors. We hedge the factors up to three times.
We also report performance of the GLS factors which use the sample conditional covariance matrix
of individual stock returns estimated using the rolling PCA procedure outlined in Section 4.2.1. For
each number of factors on the x-axis, results are averaged across 10,000 models with this number of
factors randomly drawn from the set of all factors.
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Table D.1: In-sample maximum squared Sharpe ratios of hedged factors.
We construct hedged factors and iterate by hedging up to three times. The table shows average in-sample annualized maximum squared Sharpe ratios from
hedged univariate, orthonormal, or OLS factors (panels) relative to unhedged factors (first row in each panel), in %, for all models with a constant and 1–15
additional factors. We also report performance of the GLS factors which use the sample conditional covariance matrix of individual stock returns estimated
using the rolling PCA procedure outlined in Section 4.2.1 (last row). For each number of factors reported in the columns, results are averaged across 10,000
models with this number of factors randomly drawn from the set of all available factors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Univariate

Unhedged 0.8 1.1 1.5 1.9 2.3 2.8 3.3 3.8 4.3 4.8 5.2 5.7 6.2 6.7 7.2
Hedged 1x 1.2 1.6 2.2 2.9 3.6 4.3 5.0 5.7 6.3 7.0 7.6 8.2 8.8 9.4 9.9
Hedged 2x 1.1 1.6 2.3 3.1 3.9 4.6 5.4 6.1 6.9 7.6 8.3 8.9 9.5 10.1 10.7
Hedged 3x 1.1 1.6 2.3 3.1 3.9 4.7 5.4 6.2 6.9 7.6 8.3 8.9 9.6 10.1 10.7
GLS (pca) 1.5 1.9 2.5 3.2 4.0 4.8 5.6 6.4 7.3 8.1 8.9 9.8 10.6 11.4 12.2

Orthonormal

Unhedged 0.8 1.1 1.5 2.0 2.5 3.1 3.7 4.4 5.0 5.7 6.4 7.1 7.8 8.5 9.1
Hedged 1x 1.2 1.6 2.3 3.0 3.8 4.5 5.4 6.2 7.0 7.8 8.6 9.4 10.1 10.8 11.5
Hedged 2x 1.2 1.7 2.4 3.2 4.0 4.9 5.7 6.6 7.5 8.3 9.1 9.9 10.7 11.4 12.1
Hedged 3x 1.2 1.7 2.4 3.2 4.0 4.9 5.8 6.6 7.5 8.3 9.2 9.9 10.7 11.4 12.1
GLS (pca) 1.5 1.9 2.5 3.2 4.0 4.8 5.6 6.4 7.3 8.1 8.9 9.7 10.6 11.4 12.2

OLS

Unhedged 0.8 1.1 1.5 2.0 2.6 3.3 4.0 4.7 5.5 6.3 7.1 8.0 8.8 9.6 10.5
Hedged 1x 1.2 1.6 2.3 3.0 3.8 4.6 5.5 6.3 7.2 8.0 8.9 9.7 10.5 11.3 12.0
Hedged 2x 1.2 1.7 2.4 3.2 4.0 4.9 5.8 6.6 7.5 8.4 9.2 10.0 10.8 11.5 12.3
Hedged 3x 1.2 1.7 2.4 3.2 4.0 4.9 5.8 6.7 7.5 8.4 9.2 10.0 10.8 11.6 12.3
GLS (pca) 1.5 1.9 2.5 3.2 4.0 4.8 5.6 6.4 7.3 8.1 9.0 9.8 10.6 11.4 12.2
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Table D.2: Out-of-sample maximum squared Sharpe ratios of hedged factors.
We construct hedged factors and iterate by hedging up to three times. The table shows average out-of-sample annualized maximum squared Sharpe ratios
from hedged Univariate, Orthonormal, or OLS factors (panels) relative to unhedged factors (first row in each panel), in %, for all models with a constant
and 1–15 additional factors. We also report performance of the GLS factors which use the sample conditional covariance matrix of individual stock returns
estimated using the rolling PCA procedure outlined in Section 4.2.1 (last row). For each number of factors reported in the columns, results are averaged
across 10,000 models with this number of factors randomly drawn from the set of all available factors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Univariate

Unhedged 0.4 0.5 0.5 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.2
Hedged 1x 0.5 0.5 0.5 0.6 0.7 0.7 0.8 0.9 1.0 1.0 1.1 1.2 1.2 1.3 1.4
Hedged 2x 0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Hedged 3x 0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
GLS (pca) 0.8 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4

Orthonormal

Unhedged 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Hedged 1x 0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Hedged 2x 0.5 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.8 1.9 2.0
Hedged 3x 0.5 0.5 0.6 0.7 0.8 1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.8 1.9 2.0
GLS (pca) 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

OLS

Unhedged 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.6 1.7 1.8 2.0 2.1
Hedged 1x 0.5 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.9 2.0
Hedged 2x 0.5 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Hedged 3x 0.5 0.5 0.6 0.7 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 1.9 2.1
GLS (pca) 0.8 0.9 1.0 1.1 1.2 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4
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Table D.3: Out-of-sample maximum squared Sharpe ratios of two-factor OLS models.
We report maximum out-of-sample annualized squared Sharpe ratios of all models which use
OLS factors (first column), OLS hedged factors for n = 1..3 rounds, as well as approximate
GLS factors (the last column). All models include two characteristics in Xt: a constant, and
one of the characteristics listed in the rows. GLS factors use a non-parametric covariance
matrix estimated via PCA applied to 3-year rolling windows of daily stocks returns. The row
labeled “ER” uses fitted values from a panel regression of returns on all characteristics as a
standalone characteristic. The last row averages the numbers across all models. Out-of-sample
results are based on a split sample estimation before/after 2005.

OLS Hedged n times GLS

1 2 3

Size 0.26 0.66 0.30 0.44 0.67
Value (A) 0.20 0.07 0.11 0.11 0.42
Gross Profitability 0.68 1.04 0.99 1.14 1.16
F-score 0.50 1.06 1.12 1.34 1.52
Debt Issuance 0.41 0.64 0.60 0.51 0.88
Share Repurchases 0.45 0.57 0.51 0.69 0.75
Net Issuance (A) 0.69 0.84 0.77 0.91 0.88
Asset Growth 0.26 0.23 0.18 0.19 0.57
Asset Turnover 0.69 0.77 0.61 0.56 0.74
Gross Margins 0.40 0.73 0.43 0.54 0.78
Earnings/Price 0.40 0.65 0.51 0.66 0.82
Investment/Capital 0.31 0.24 0.18 0.27 0.74
Investment Growth 0.30 0.18 0.22 0.21 0.58
Sales Growth 0.42 0.21 0.23 0.23 0.62
Leverage 0.19 0.06 0.08 0.10 0.40
Return on Assets (A) 0.45 0.96 0.78 0.85 1.01
Return on Book Equity (A) 0.42 0.98 0.59 0.75 0.92
Sales/Price 0.35 0.51 0.36 0.39 0.63
Momentum (6m) 0.27 0.39 0.42 0.43 0.73
Industry Momentum 0.87 0.73 0.52 0.46 1.23
Momentum (12m) 0.42 0.40 0.48 0.44 0.70
Momentum-Reversals 0.24 0.43 0.42 0.36 0.54
Value (M) 0.20 0.25 0.37 0.37 0.65
Net Issuance (M) 0.77 1.01 0.78 0.80 1.99
Short-Term Reversals 0.11 0.18 0.19 0.21 0.39
Idiosyncratic Volatility 0.57 0.38 0.18 0.23 1.04
Beta Arbitrage 0.90 0.59 0.61 0.62 1.06
Industry Rel. Reversals 0.08 0.19 0.23 0.23 0.40
Price 0.35 0.47 0.54 0.51 0.72
Firm’s age 0.39 0.79 0.54 0.56 0.75
Share Volume 0.65 0.52 0.36 0.35 1.14
Exchange Switch 1.13 1.97 1.89 1.90 1.67
IPO 0.30 0.63 0.34 0.34 0.61

ER 1.37 1.40 1.66 1.71 2.65

Average 0.47 0.61 0.53 0.57 0.89
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Table D.4: In-sample maximum squared Sharpe ratios for DMRS-hedged factors.
We construct hedged factors and iterate by hedging using the DMRS procedure up to three times. The table shows annualized average in-sample maximum
squared Sharpe ratios from hedged univariate, orthonormal, or OLS factors (panels) relative to unhedged factors (first row in each panel), in %, for all
models with a constant and 1–15 additional factors. We also report performance of the GLS factors which use the sample conditional covariance matrix of
individual stock returns estimated using the rolling PCA procedure outlined in Section 4.2.1 (last row). For each number of factors reported in the columns,
results are averaged across 10,000 models with this number of factors randomly drawn from the set of all available factors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Univariate

Unhedged 0.8 1.1 1.5 1.9 2.3 2.8 3.3 3.8 4.2 4.7 5.2 5.7 6.2 6.7 7.1
Hedged 1x 0.9 1.3 1.7 2.2 2.7 3.2 3.7 4.1 4.6 5.1 5.6 6.1 6.5 7.0 7.4
Hedged 2x 1.0 1.3 1.8 2.3 2.8 3.2 3.7 4.2 4.7 5.2 5.6 6.1 6.6 7.0 7.4
Hedged 3x 1.0 1.4 1.9 2.3 2.8 3.3 3.7 4.2 4.7 5.1 5.6 6.1 6.5 6.9 7.4
GLS (pca) 1.5 1.9 2.5 3.2 4.0 4.8 5.6 6.4 7.3 8.1 9.0 9.8 10.6 11.4 12.2

Orthonormal

Unhedged 0.8 1.1 1.5 2.0 2.5 3.1 3.7 4.4 5.0 5.7 6.4 7.1 7.8 8.5 9.2
Hedged 1x 0.9 1.3 1.8 2.3 2.9 3.5 4.1 4.8 5.4 6.1 6.8 7.4 8.1 8.7 9.3
Hedged 2x 1.0 1.4 1.8 2.4 3.0 3.5 4.2 4.8 5.5 6.1 6.8 7.4 8.1 8.7 9.3
Hedged 3x 1.0 1.4 1.9 2.4 3.0 3.6 4.2 4.8 5.4 6.1 6.7 7.4 8.0 8.6 9.2
GLS (pca) 1.5 1.9 2.5 3.2 4.0 4.8 5.6 6.4 7.3 8.1 9.0 9.8 10.6 11.4 12.2

OLS

Unhedged 0.8 1.1 1.5 2.0 2.6 3.3 4.0 4.7 5.5 6.3 7.1 7.9 8.8 9.6 10.4
Hedged 1x 0.9 1.3 1.8 2.4 3.0 3.6 4.3 5.0 5.8 6.6 7.4 8.1 8.9 9.7 10.4
Hedged 2x 1.0 1.3 1.9 2.4 3.0 3.7 4.4 5.1 5.8 6.6 7.4 8.1 8.9 9.7 10.4
Hedged 3x 1.0 1.4 1.9 2.5 3.0 3.7 4.4 5.1 5.8 6.6 7.3 8.1 8.8 9.6 10.4
GLS (pca) 1.5 1.9 2.5 3.2 4.0 4.8 5.6 6.4 7.3 8.1 9.0 9.8 10.6 11.4 12.2

55



Table D.5: Out-of-sample maximum squared Sharpe ratios for DMRS-hedged factors.
We construct hedged factors and iterate by hedging using the DMRS procedure up to three times. The table shows annualized average out-of-sample
maximum squared Sharpe ratios from hedged univariate, orthonormal, or OLS factors (panels) relative to unhedged factors (first row in each panel), in %,
for all models with a constant and 1–15 additional factors. We also report performance of the GLS factors which use the sample conditional covariance
matrix of individual stock returns estimated using the rolling PCA procedure outlined in Section 4.2.1 (last row). For each number of factors reported in
the columns, results are averaged across 10,000 models with this number of factors randomly drawn from the set of all available factors.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Univariate

Unhedged 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.1 1.2
Hedged 1x 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.1 1.1 1.1 1.2
Hedged 2x 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.1 1.1 1.2
Hedged 3x 0.4 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.1 1.1 1.1
GLS (pca) 0.8 0.9 1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4

Orthonormal

Unhedged 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Hedged 1x 0.4 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Hedged 2x 0.4 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
Hedged 3x 0.4 0.5 0.6 0.7 0.8 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
GLS (pca) 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.3 2.4

OLS

Unhedged 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.7 1.8 2.0 2.1
Hedged 1x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.5 1.6 1.7 1.8 2.0
Hedged 2x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.6 1.7 1.8 2.0
Hedged 3x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.8 1.9
GLS (pca) 0.8 0.9 1.0 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4
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Table D.6: Maximum squared Sharpe ratios of hedged factors (DMRS hedging).
We report in-sample (top panel) and out-of-sample (bottom panel) annualized maximum
squared Sharpe ratio of the MVE portfolio constructed from 34 unhedged (first column) or
DMRS-hedged (up to five times) factors. Rows correspond to three types of factors we discuss
in Section 4.2.

Unhedged Hedged n times

1 2 3 4 5

In-sample

Univariate 13.9 13.7 13.5 13.4 13.3 13.3
SVD 18.1 18.0 17.7 17.7 17.7 17.7
OLS 21.2 20.9 20.7 20.8 20.8 20.8

Out-of-sample

Univariate 1.3 1.6 1.4 1.4 1.4 1.4
SVD 3.6 3.5 3.4 3.4 3.4 3.4
OLS 4.1 4.5 4.4 4.5 4.5 4.5

In Table D.6 we consider the effect of hedging on the models with the full set
of 34 factors, both in sample (top panel) and out of sample (bottom panel). The
Table reports annualized maximum squared Sharpe ratio of the mean-variance optimal
portfolio constructed from 34 unhedged (first column) or DMRS-hedged (up to five
times) factors. Rows correspond to three types of factors we discuss in Section 4.2.

Appendix D.2. Dimensionality reduction

In Table D.7 we investigate whether the performance of latent factors can be improved
by using our hedging procedure. Because latent factors are designed to explain as much
variation in realized returns as possible, for a given number of factors, we would expect
the violations of the conditions of Proposition 2 to be quantitatively less important
for latent factor models with a sufficient number of factors. The table presents results
for the four type of latent factors models we considered previously (shown in their
respective panels). For each type, the first row in a panel shows maximum squared
Sharpe ratios from unhedged models with 1..12 factors (rows), the three subsequent
rows show results from hedging the latent-factor model’s implied weights using our
hedging procedure up to three times. ∗ and ∗∗ indicate significance of the squared
Sharpe ratio difference between the given model and the unhedged benchmark (first
row) at the 5% and 1% levels, respectively.

We find that hedging can improve the performance of latent factor models, espe-
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Table D.7: In-sample hedging of latent factor models.
The table shows the effect of hedging on four latent factor models (panels). The first row in
each panel shows annualized in-sample maximum squared Sharpe ratios of the model with
n = 1..12 factors (columns). The three subsequent rows hedge this model iteratively. ∗

indicate p < 0.05 of a one-sided test of the squared Sharpe ratio difference of the given model
relative to the unhedged benchmark (first row). ∗∗ indicate p < 0.01.

1 2 3 4 5 6 7 8 9 10 11 12

SCS

Unhedged 0.1 0.6 0.9 1.2 3.1 3.1 3.1 4.4 4.7 4.7 8.3 8.4
Hedged 1x 0.1 0.6 1.3∗ 1.7 7.4∗∗ 7.5∗∗ 7.6∗∗ 9.1∗∗ 9.2∗∗ 9.3∗∗ 11.1∗∗ 11.2∗∗
Hedged 2x 0.1 0.6 1.2 1.8∗ 7.7∗∗ 7.9∗∗ 8.0∗∗ 9.7∗∗ 9.8∗∗ 9.9∗∗ 11.6∗∗ 11.8∗∗
Hedged 3x 0.1 0.6 1.3∗ 1.8∗ 7.7∗∗ 7.9∗∗ 7.9∗∗ 9.7∗∗ 9.8∗∗ 9.9∗∗ 11.7∗∗ 11.9∗∗
GLS (pca) 0.1 0.8 2.0∗∗ 2.3∗∗ 10.1∗∗ 10.4∗∗ 10.6∗∗ 13.1∗∗ 13.0∗∗ 13.0∗∗ 16.6∗∗ 16.8∗∗

IPCA

Unhedged 0.3 3.6 4.1 4.6 6.9 7.9 12.3 12.8 14.0 14.7 15.0 15.4
Hedged 1x 0.4 3.8 4.7 5.2 6.7 8.0 13.0 13.7 15.3 16.1 16.2 16.4
Hedged 2x 0.3 4.4∗ 5.0∗ 5.7∗ 7.3 8.5 13.7 13.9 15.4 16.2 16.2 16.4
Hedged 3x 0.4 4.3 4.9∗ 5.7∗ 7.3 8.5 13.7 14.0 15.4 16.1 16.1 16.3
GLS (pca) 0.6∗∗ 7.8∗∗ 9.1∗∗ 8.9∗∗ 10.0∗∗ 10.8∗∗ 16.0∗∗ 15.9∗∗ 16.7∗∗ 16.8∗∗ 16.8∗∗ 17.2∗

PPCA

Unhedged 0.3 0.3 0.7 2.5 8.4 8.4 8.9 12.2 12.3 13.4 13.4 13.5
Hedged 1x 0.3 0.3 1.2∗ 3.9∗∗ 12.5∗∗ 12.9∗∗ 13.2∗∗ 14.7∗ 15.2∗∗ 16.0∗∗ 16.1∗∗ 16.1∗∗
Hedged 2x 0.3 0.3 1.1 4.1∗∗ 12.7∗∗ 13.0∗∗ 13.4∗∗ 15.0∗∗ 15.2∗∗ 15.8∗ 16.1∗∗ 16.2∗∗
Hedged 3x 0.4 0.3 1.2∗ 4.0∗∗ 12.7∗∗ 12.9∗∗ 13.3∗∗ 15.0∗∗ 15.2∗∗ 15.8∗ 16.0∗∗ 16.1∗∗
GLS (pca) 0.4∗ 0.4∗ 1.6∗∗ 4.0∗∗ 11.3∗∗ 11.5∗∗ 11.6∗∗ 14.9∗∗ 15.2∗∗ 15.8∗∗ 15.7∗∗ 15.9∗∗

IPCA (GLS)

Unhedged 0.6 1.7 11.4 11.1 11.9 13.1 16.4 17.0 16.9 16.5 16.5 16.6
Hedged 1x 0.6 1.7 11.4 11.0 11.9 13.1 16.5 17.2 17.0 16.6 16.4 16.5
Hedged 2x 0.6 1.7 11.3 10.9 11.8 13.1 16.6 17.2 17.1 16.7 16.6 16.6
Hedged 3x 0.6 1.7 11.3 10.9 11.8 13.1 16.5 17.2 17.0 16.6 16.5 16.5
GLS (pca) 0.6 1.7 11.4 11.1 11.9 13.1 16.4 17.0 16.9 16.5 16.5 16.6
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Table D.8: Out-of-sample hedging of latent factor models.
The table shows the effect of hedging on four latent factor models (panels). The first row
in each panel shows annualized out-of-sample maximum squared Sharpe ratios of the model
with n = 1..12 factors (columns). The three subsequent rows hedge this model iteratively.
Out-of-sample results are based on a split sample estimation before/after 2005.

1 2 3 4 5 6 7 8 9 10 11 12

SCS

Unhedged 0.1 0.2 0.4 0.5 0.4 0.3 0.2 0.6 0.8 0.8 1.6 1.5
Hedged 1x 0.0 0.1 0.4 0.4 0.9 0.7 0.7 1.4 1.4 1.4 2.9 2.9
Hedged 2x 0.0 0.1 0.5 0.5 1.1 1.0 0.9 1.6 1.6 1.6 3.1 3.1
Hedged 3x 0.0 0.1 0.6 0.5 1.0 0.9 0.9 1.6 1.7 1.7 3.2 3.2
GLS (pca) 0.1 0.3 0.8 0.7 1.4 1.4 1.2 2.2 2.1 2.1 4.1 3.9

IPCA

Unhedged 0.3 0.6 0.7 0.9 1.0 1.2 2.2 2.3 2.7 3.2 3.5 3.8
Hedged 1x 0.2 0.2 0.3 0.5 0.5 1.0 2.3 2.6 3.8 4.4 4.4 4.4
Hedged 2x 0.1 0.3 0.3 0.6 0.9 1.4 3.0 3.0 4.3 4.5 4.3 4.4
Hedged 3x 0.3 0.3 0.3 0.6 0.9 1.4 2.9 3.0 4.2 4.4 4.3 4.3
GLS (pca) 0.4 1.8 2.4 2.3 2.2 2.6 4.5 4.2 4.9 4.3 4.2 4.4

PPCA

Unhedged 0.2 0.2 0.4 1.0 1.7 1.4 1.3 3.2 2.5 3.3 3.1 3.1
Hedged 1x 0.2 0.1 0.6 0.9 2.9 2.3 2.4 3.4 3.8 4.2 4.2 4.1
Hedged 2x 0.0 0.1 0.6 0.9 2.9 2.4 2.6 3.7 3.8 4.1 4.3 4.2
Hedged 3x 0.2 0.1 0.6 0.8 2.8 2.3 2.5 3.7 3.8 4.1 4.2 4.2
GLS (pca) 0.2 0.2 0.9 1.6 1.9 1.7 1.6 3.8 3.6 3.7 3.6 3.5

IPCA (GLS)

Unhedged 0.4 0.3 2.9 2.3 2.8 2.9 4.7 5.0 3.9 3.8 3.8 3.8
Hedged 1x 0.4 0.3 2.9 2.3 2.8 3.0 4.9 5.2 4.1 3.9 3.8 3.8
Hedged 2x 0.4 0.3 2.9 2.2 2.7 2.9 4.8 5.2 4.0 3.8 3.7 3.7
Hedged 3x 0.4 0.3 2.9 2.3 2.8 3.0 4.8 5.2 4.0 3.8 3.7 3.7
GLS (pca) 0.4 0.3 2.9 2.3 2.8 2.9 4.7 5.0 3.9 3.8 3.8 3.8
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cially the ones that are not OLS transformed, such as the SCS model. The improve-
ments for PPCA are also sizeable and statistically significant in this dataset. For OLS
transformed models such as IPCA, improvements are more muted and largely insignifi-
cant for models with a sufficient number of factors. Table D.8 shows that these findings
translate to out-of-sample data.

As expected, the GLS version of IPCA factors is more efficient than standard IPCA
and does not benefit from hedging.

Appendix E. An alternative dataset
In this section we use a different dataset with a much wider selection of characteristics.
The data is based on Wharton Research Data Services “Backtester Plus” dataset from
the Factors by WRDS suite. It contains 134 signals based on CRSP Stocks, Compustat,
IBES, OptionMetrics, Thomson Reuters, and WRDS SEC Analytics databases. The
entire list of factors is available on the WRDS website.

We rank-transform and standardize stock characteristics from this dataset and
merge them with daily stock returns from CRSP. The sample is from January 1975
to December 2020. We apply several filters to preserve characteristics with maximum
data availability. In particular, we remove binary characteristics and any characteris-
tics for which more than 25% of the observations in the panel of firms are missing. We
remove any time periods in the early part of the sample for which less than 500 firms
are available. We also remove firms whose past market caps do not exceed 0.01% of
the aggregate stock market capitalization (e.g., firms with market capitalizations less
than $4 billion on a $40 trillion aggregate stock market valuation).

Importantly, instead of filling in any missing characteristics with their cross-sectional
means as we did in our main exercise, we impute characteristic values using an advanced
imputation method based on Huang and Kozak (2023). 27

The resulting dataset contains 107 months of monthly characteristics and daily
returns on 4,825 stocks.

Figures E.5–E.8 and Tables E.9–E.11 below report results for this dataset.

27 They develop a Bayesian tensor model to impute missing or infrequently observed financial data
on firm characteristics. One of the advantages of their setup is that they model and use the time-series
and cross-sectional dependencies of firm characteristics in a unified and flexible way, which significantly
improves imputation accuracy and allows for statistical inference via multiple imputation by averaging
over random samples of missing characteristics drawn from the joint probability distribution they
estimate.

60



Table E.9: In-sample maximum squared Sharpe ratios of two-factor OLS models.
We report in-sample maximum annualized squared Sharpe ratios of all models which use OLS
factors (first column), OLS hedged factors for n = 1..3 rounds, as well as approximate GLS
factors (the last column). All models include two characteristics in Xt: a constant, and one
of the characteristics listed in the rows. GLS factors use a non-parametric covariance matrix
estimated via PCA applied to 3-year rolling windows of daily stocks returns. The row labeled
“ER” uses fitted values from a panel regression of returns on all characteristics as a standalone
characteristic. The last row averages the numbers across all models. ∗ indicate p < 0.05 of
a one-sided test of the squared Sharpe ratio difference of the given model relative to the
unhedged benchmark (first column). ∗∗ indicate p < 0.01.

OLS Hedged n times GLS

1 2 3

ptb 0.52 1.16∗∗ 1.16∗ 1.03∗ 1.25∗∗
capes 0.52 1.25∗∗ 1.20∗∗ 1.24∗∗ 1.26∗∗
capei 0.58 1.30∗∗ 1.21∗ 1.32∗∗ 1.31∗∗
capec 0.54 1.22∗∗ 1.27∗∗ 1.18∗∗ 1.29∗∗
capef 0.74 1.31∗ 1.33∗ 1.35∗ 1.65∗∗
btm 0.52 1.18∗∗ 1.14∗ 1.13∗ 1.28∗∗
cr 0.62 1.61∗∗ 1.77∗∗ 1.79∗∗ 1.85∗∗
dr 0.54 1.38∗∗ 1.38∗∗ 1.37∗∗ 1.50∗∗
accrual 0.73 2.23∗∗ 2.06∗∗ 2.09∗∗ 2.15∗∗
accrualpct 1.00 1.82∗∗ 1.79∗∗ 1.85∗∗ 2.45∗∗
gprof 0.89 1.73∗∗ 1.36 1.71∗∗ 2.03∗∗
gprofg 2.37 3.68∗∗ 3.57∗∗ 3.72∗∗ 4.87∗∗
oprof 0.94 1.96∗∗ 1.87∗∗ 2.01∗∗ 2.94∗∗
Net Operating Assets 0.99 1.83∗ 1.76∗ 1.69∗ 2.15∗∗
dnoa 0.87 1.66∗∗ 1.69∗∗ 1.78∗∗ 1.89∗∗
sg 2.27 3.30∗∗ 3.27∗∗ 3.50∗∗ 4.19∗∗
atg 0.54 1.16∗∗ 1.23∗∗ 1.32∗∗ 1.30∗∗
cch 0.94 1.67∗ 1.66∗ 1.67∗ 2.43∗∗
Return on Assets (Q) 0.65 1.37∗∗ 1.01 1.12∗ 1.98∗∗
Return on Book Equity (Q) 0.70 1.24∗ 1.07 1.22∗ 1.93∗∗
itoa 0.74 1.37∗ 1.45∗∗ 1.50∗∗ 1.45∗∗
taxexp 1.04 1.86∗∗ 1.90∗∗ 1.90∗∗ 2.70∗∗
deftax 0.65 1.24∗ 1.17∗ 1.18∗ 1.50∗∗
pmg 2.18 3.59∗∗ 3.28∗ 3.54∗∗ 4.80∗∗
div_p 0.53 1.27∗∗ 1.24∗ 1.28∗∗ 1.30∗∗
cf_p 0.68 1.47∗∗ 1.61∗∗ 1.58∗∗ 1.93∗∗
cf 1.34 2.29∗∗ 2.20∗ 2.40∗∗ 3.55∗∗
cfm 0.78 1.43∗ 1.38∗ 1.71∗∗ 2.17∗∗
aue 0.71 1.29∗ 1.23∗ 1.18∗ 1.52∗∗
aueg 1.80 2.81∗∗ 2.76∗∗ 3.00∗∗ 3.75∗∗
fcf_p 1.47 2.13∗ 2.26∗ 2.32∗ 3.29∗∗
fcf 2.11 2.33 2.50 2.66 3.89∗∗
sale_p 0.52 1.23∗∗ 1.21∗ 1.26∗∗ 1.26∗∗
pe 0.57 1.21∗∗ 1.15∗ 1.27∗∗ 1.27∗∗
ev_ebitda 1.02 1.99∗∗ 1.92∗∗ 2.08∗∗ 2.59∗∗
pm_p 0.57 1.24∗∗ 1.18∗ 1.32∗∗ 1.24∗∗
rd_sale 0.55 1.59∗∗ 1.53∗∗ 1.61∗∗ 1.53∗∗
rdg 0.78 1.94∗∗ 1.80∗∗ 1.83∗∗ 2.00∗∗
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Table E.9: In-sample maximum squared Sharpe ratios of two-factor OLS models (continued).

OLS Hedged n times GLS

1 2 3

rd_p 0.63 1.61∗∗ 1.46∗∗ 1.52∗∗ 1.62∗∗
hire 0.53 1.15∗∗ 1.21∗∗ 1.28∗∗ 1.28∗∗
ltdg 0.64 1.29∗∗ 1.37∗∗ 1.49∗∗ 1.49∗∗
cash_to_debt 0.64 1.43∗∗ 1.10 1.27∗ 2.08∗∗
quick 0.54 1.43∗∗ 1.44∗∗ 1.53∗∗ 1.44∗∗
current 0.52 1.28∗∗ 1.22∗ 1.31∗∗ 1.29∗∗
cheturn 0.56 1.41∗∗ 1.29∗ 1.49∗∗ 1.54∗∗
recturn 0.78 1.35∗ 1.47∗∗ 1.39∗∗ 1.56∗∗
invturn 1.01 1.37 1.25 1.31 1.59∗∗
deprate 0.61 1.55∗∗ 1.66∗∗ 1.54∗∗ 1.70∗∗
quickg 0.76 1.30∗ 0.98 1.04 1.67∗∗
currentg 0.57 1.17∗ 0.96 1.18∗ 1.40∗∗
cheturng 0.89 1.43∗ 1.18 1.35 1.76∗∗
recturng 0.73 1.57∗∗ 1.55∗∗ 1.55∗∗ 1.97∗∗
invturng 2.13 2.80∗ 2.94∗∗ 2.98∗∗ 3.40∗∗
deprateg 0.83 1.84∗∗ 1.70∗∗ 1.78∗∗ 2.09∗∗
taxinc 0.75 1.40∗∗ 1.31∗ 1.55∗∗ 1.50∗∗
saleg 0.67 1.40∗∗ 1.43∗∗ 1.43∗∗ 1.77∗∗
capxg 0.72 1.42∗∗ 1.56∗∗ 1.60∗∗ 1.68∗∗
capxag 1.34 2.61∗∗ 2.58∗∗ 2.68∗∗ 2.90∗∗
capxltg 0.71 1.32∗ 1.45∗∗ 1.64∗∗ 1.66∗∗
pmsg 1.22 1.97∗ 2.00∗ 2.07∗∗ 2.86∗∗
sgag 0.99 1.91∗∗ 1.96∗∗ 2.01∗∗ 2.46∗∗
invg 1.00 1.58∗ 1.50 1.65∗ 1.82∗∗
roag 1.49 2.21∗ 2.36∗ 2.45∗∗ 3.46∗∗
drg 1.06 1.90∗∗ 1.99∗ 2.00∗∗ 2.81∗∗
corpinvest 0.61 1.25∗∗ 1.28∗∗ 1.35∗∗ 1.42∗∗
ceqg 0.69 1.27∗ 1.30∗ 1.34∗ 1.91∗∗
oplev 0.75 1.17 0.89 1.07 1.54∗∗
revsup 0.84 1.36∗∗ 1.39∗ 1.62∗∗ 1.97∗∗
firmtang 0.58 1.94∗∗ 2.02∗∗ 1.86∗∗ 2.05∗∗
reholding 0.54 1.09∗ 1.27∗∗ 1.27∗∗ 1.37∗∗
cashprod 0.53 1.22∗∗ 1.33∗∗ 1.25∗∗ 1.38∗∗
cfvol 0.53 1.42∗∗ 1.26∗∗ 1.23∗∗ 1.32∗∗
cfvols 0.55 1.30∗∗ 1.48∗∗ 1.48∗∗ 1.32∗∗
oivol 0.61 1.26∗∗ 1.34∗∗ 1.22∗∗ 1.32∗∗
roavol 0.59 1.40∗∗ 1.27∗ 1.18∗ 1.29∗∗
accrualvol 0.54 1.42∗∗ 1.35∗∗ 1.25∗∗ 1.29∗∗
ior 0.77 1.41∗ 1.14 1.40∗ 1.48∗∗
dbreadth 0.74 1.36∗∗ 1.45∗ 1.51∗∗ 1.84∗∗
dior 0.53 1.12∗∗ 1.26∗∗ 1.18∗∗ 1.35∗∗
dhhi 0.52 1.12∗ 0.79 1.10∗ 1.32∗∗
divyield 0.73 1.38∗∗ 1.24∗ 1.29∗ 1.41∗∗
momentum 0.88 1.39∗ 1.53∗ 1.54∗ 1.93∗∗
momentum12 0.91 1.53∗ 1.64∗ 1.69∗∗ 2.10∗∗
momentum36 0.63 1.21∗ 1.26∗ 1.35∗∗ 1.63∗∗
ltr36 0.61 1.17∗ 1.23∗ 1.30∗∗ 1.48∗∗
ltr60 0.56 1.11∗ 1.18∗ 1.24∗∗ 1.30∗∗62



Table E.9: In-sample maximum squared Sharpe ratios of two-factor OLS models (continued).

OLS Hedged n times GLS

1 2 3

beta 1.15 1.14 1.17 1.26 1.55∗
Idiosyncratic Volatility 0.68 1.32∗∗ 1.26∗ 1.30∗∗ 1.36∗∗
maxret 0.93 1.54∗∗ 1.45∗ 1.45∗ 1.81∗∗
seasonality 0.98 2.12∗∗ 1.86∗ 2.11∗∗ 2.80∗∗
cei 0.78 1.70∗∗ 1.59∗∗ 1.49∗∗ 1.70∗∗
nsi 0.72 1.66∗∗ 1.65∗∗ 1.60∗∗ 1.61∗∗
chs 0.93 1.36 1.20 1.36 2.09∗∗
o_score 0.57 1.17∗ 1.07∗ 1.44∗∗ 1.82∗∗
Earnings Surprises 0.91 1.34 1.41∗ 1.44∗ 1.88∗∗
prcdelay1 0.74 1.23∗ 1.25∗ 1.29∗ 1.29∗
prcdelay2 0.63 1.05∗ 0.83 1.29∗∗ 1.29∗∗
prcdelay3 0.64 1.05∗ 0.84 1.29∗ 1.28∗
dispersion 0.69 1.12∗ 1.22∗ 1.24∗ 1.38∗∗
active_flow 0.53 1.18∗∗ 0.88 1.05∗ 1.31∗∗
sir 3.31 4.19∗ 4.26 4.68∗∗ 6.41∗∗
sio 2.16 2.76∗ 2.75 3.20∗∗ 4.27∗∗
scr 0.92 1.59∗∗ 1.55∗ 1.66∗ 2.05∗∗
liqvol 1.21 1.53 1.23 1.38 1.56
trend_factor 1.12 2.30∗∗ 2.17∗∗ 2.59∗∗ 2.80∗∗
momaccel 0.76 1.47∗∗ 1.50∗∗ 1.50∗ 1.85∗∗

ER 6.73 9.62∗∗ 9.84∗∗ 9.71∗∗ 13.28∗∗

Average 0.93 1.68 1.64 1.73 2.09
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Figure E.5: In-sample maximum squared Sharpe ratio improvement due to iterative hedg-
ing of OLS factors. The plot shows improvement, in %, of annualized average in-sample maximum
squared Sharpe ratio from hedged OLS factors relative to unhedged factors, for all models with a
constant and 1–15 additional factors. We hedge the factors up to three times. We also report per-
formance of the GLS factors which use the sample conditional covariance matrix of individual stock
returns estimated using the rolling PCA procedure outlined in Section 4.2.1. For each number of
factors on the x-axis, results are averaged across 10,000 models with this number of factors randomly
drawn from the set of all factors.
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Figure E.6: In-sample maximum squared Sharpe ratio of hedged OLS factors. The plot
shows annualized average in-sample maximum squared Sharpe ratios of unhedged and hedged OLS
factors, as well as GLS factors. We hedge the factors up to three times. The latter use the sample
conditional covariance matrix of individual stock returns estimated using the rolling PCA procedure
outlined in Section 4.2.1. For each number of factors on the x-axis, results are averaged across 10,000
models with this number of factors randomly drawn from the set of all factors.
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Figure E.7: In-sample MVE portfolio’s squared Sharpe ratio improvement due to iterative
hedging of Univariate factors. The plot shows improvement, in %, of annualized average in-sample
MVE portfolio’s squared Sharpe ratio from hedged Univariate factors relative to unhedged factors,
for all models with a constant and 1–15 additional factors. We hedge the factors up to three times.
We also report performance of the MVE factors which use the sample conditional covariance matrix
of individual stock returns estimated using the rolling PCA procedure outlined in Section 4.2.1. For
each number of factors on the x-axis, results are averaged across 10,000 models with this number of
factors randomly drawn from the set of all factors.
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Figure E.8: Out-of-sample MVE portfolio’s squared Sharpe ratio improvement due to
iterative hedging of OLS factors. The plot shows improvement, in %, of annualized average
out-of-sample MVE portfolio’s squared Sharpe ratio from hedged OLS factors relative to unhedged
factors, for all models with a constant and 1–15 additional factors. We hedge the factors up to three
times. We also report performance of the GLS factors which use the sample conditional covariance
matrix of individual stock returns estimated using the rolling PCA procedure outlined in Section 4.2.1.
For each number of factors on the x-axis, results are averaged across 10,000 models with this number
of factors randomly drawn from the set of all factors.
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Table E.10: Maximum squared Sharpe ratios of hedged factors.
We report in-sample (top panel) and out-of-sample (bottom panel) annualized maximum
squared Sharpe ratio of the MVE portfolio constructed from 34 unhedged (first column) or
hedged (up to five times) factors. Rows correspond to three types of factors we discuss in
Section 4.2. ∗ indicate p < 0.05 of a one-sided Barillas et al. (2020) test of the squared
Sharpe ratio difference of a given model relative to the unhedged benchmark (first column).
∗∗ indicate p < 0.01.

Unhedged Hedged n times

1 2 3 4 5

In-sample

Univariate 23.6 28.1∗∗ 30.0∗∗ 30.3∗∗ 30.4∗∗ 30.4∗∗
Orthonormal 29.8 30.4 32.4 32.7 32.6 32.4
OLS 31.9 30.2 31.7 31.7 31.4 31.3

Out-of-sample

Univariate 3.7 4.0 4.7 4.8 4.8 4.9
Orthonormal 4.1 3.9 4.7 4.9 5.0 5.1
OLS 3.3 3.5 4.0 4.1 4.0 4.0
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Table E.11: Dimensionality reduction: benchmarking different portfolio sorts.
The table reports maximum in-sample (top panel) and out-of-sample (bottom panel) annual-
ized squared Sharpe ratios of MVE portfolios constructed from N PCs (columns) of one of four
portfolio sorts (rows): (i) univariate from Kozak et al. (2018) and Kozak et al. (2020) (SCS),
(ii) IPCA from Kelly et al. (2019) implemented as in Example 5, (iii) PPCA from Kim et al.
(2021) implemented as in Example 6, and (iv) GLS version of IPCA factors. Out-of-sample
results are based on a split sample estimation before/after 2005.

1 2 3 4 5 6 7 8 9 10 11 12

In-sample

SCS 0.1 0.1 0.8 2.4 3.5 4.8 7.0 7.1 7.3 7.4 10.7 11.0
IPCA 0.5 1.2 1.3 2.2 2.7 3.9 6.0 6.8 8.5 9.6 10.0 12.4
PPCA 0.5 0.5 0.8 4.2 9.5 14.4 14.8 14.8 15.2 15.2 15.2 15.2
IPCA (GLS) 1.4 4.3 4.4 6.5 7.1 7.1 10.7 12.0 12.2 13.9 15.0 15.5

Out-of-sample

SCS 0.1 0.1 0.4 0.9 1.6 2.2 1.3 1.2 1.1 1.0 2.2 2.3
IPCA 0.3 1.7 1.6 0.9 0.7 1.4 1.7 1.4 2.1 1.9 2.0 2.7
PPCA 0.3 0.4 0.5 2.4 3.4 3.4 3.5 3.4 3.1 3.0 2.9 2.8
IPCA (GLS) 0.7 2.5 2.5 2.1 2.1 2.0 3.2 3.0 2.8 3.3 3.5 3.6

67


